Cheap and Available State Machine Replication

Rong Shi
The Ohio State University

Abstract

This paper presents that, by combining on-demand in-
stantiation and lazy recovery, we can reduce the cost of
asynchronous state machine replication protocols, such
as Paxos and UpRight, while maintaining their high
availability. To reduce cost, we incorporate on-demand
instantiation, which activates a subset of replicas first and
activates backup ones when active ones fail. To solve its
key limitation—the system can be halted for long when
activating a backup replica, we apply lazy recovery, al-
lowing the system to proceed while recovering backup
nodes in the background. The key contribution of this
paper is to identify that, when agreement nodes and exe-
cution nodes are logically separated, they each present a
unique property that enables lazy recovery. We have ap-
plied this idea to Paxos and built ThriftyPaxos, which, as
shown in the evaluation, can achieve higher throughput
and similar availability comparing to standard Paxos, de-
spite the fact that ThriftyPaxos activates fewer replicas.

1 Introduction

This paper presents that, by combining on-demand in-
stantiation [35,56] and lazy recovery [29,30], we can
reduce the cost of asynchronous state machine replica-
tion (SMR) protocols [49], such as Paxos [31, 32,45] and
UpRight [16], while maintaining their high availability.
Replication is widely used in today’s storage systems
to protect data against failures. In general, stronger
replication protocols that can tolerate more kinds of er-
rors usually need more replicas. For example, primary
backup protocols [10, 11,21, 54] can tolerate f machine
crashes with f+ 1 replicas, which is the minimal one can
expect. Paxos [31,32,45] needs 2f + 1 replicas to toler-
ate f machine crashes and asynchronous events (e.g inac-
curate timeout caused by network partitions or slow ma-
chines). To further tolerate arbitrary failures, Byzantine
Fault Tolerance (BFT) protocols [1, 6, 13, 16, 18, 28, 36]

Yang Wang
The Ohio State University

need at least 3 f + 1 replicas.

More replicas incur a higher cost: the system needs
more storage space to store data, more bandwidth to
transfer data, and more processors to process data.
Whether to pay such additional cost for stronger guar-
antees becomes a hard question for developers. Indeed,
while a number of systems are using Paxos to replicate
their data [3-5,9, 12, 17], many others are still using pri-
mary backup or similar protocols, willing to take the risk
of occasional data inconsistency [21, 24, 44, 50].

Existing attempts to reduce replication cost are only
effective for certain applications or protocols. For ex-
ample, separating agreement from execution [57] can re-
duce the number of execution replicas in BFT protocols
to 2f + 1, but it is not effective for applications whose
agreement is the bottleneck or those that are using Paxos.
On-demand instantiation [35, 56] activates the minimal
number of replicas first, and activates backup ones when
the active ones fail. However, before a backup replica
can take its responsibility, it must transfer the current
state from an active replica, and the system is unavailable
during state transfer: for applications with a large state,
the system can be halted for long. Gnothi [55] separates
data from metadata, performs partial replication for data,
and performs full replication for metadata: it works ef-
fectively for applications whose data is much larger than
metadata, but may not work efficiently for others.

This paper, instead, presents a general approach to re-
duce the replication cost of asynchronous SMR proto-
cols, while maintaining their availability properties. To
reduce replication cost, our approach incorporates the
idea of on-demand instantiation, which activates a subset
of replicas first and activates backup ones when active
ones fail. To address its key limitation—the system may
be unavailable for a long time when a backup replica is
rebuilding its state, our approach incorporates lazy re-
covery [29,30], which rebuilds a backup replica’s state
in the background without halting the system.

Neither on-demand instantiation nor lazy recovery is

novel. The key contribution of this work is to identify
that, for SMR protocols, lazy recovery is possible only
when agreement and execution are separated.

SMR protocols first run an agreement protocol across
replicas to decide the next request to execute and then
execute the request on each replica. Therefore, a replica
can be logically separated into an agreement node, which
runs the agreement protocol, and an execution node,
which runs the application’s logic to execute the request.
When separated, they each present a unique property that
enables lazy recovery:

Instant activation for agreement. In principle, an
agreement protocol needs to answer the question “what
is the next request to execute”. This question has the
“memoryless” property that an agreement node does not
need to know prior requests to decide the next one. This
suggests that when an active agreement node fails, a
blank agreement node can join the protocol instantly.

Separating critical and flexible tasks for execution.
An execution node must execute requests in order, be-
cause execution of later requests may depend on infor-
mation in earlier requests. Its opportunity for lazy re-
covery comes from a different property: critical tasks
that must be performed for availability (e.g. executing
a request and replying to the client) sometimes require
fewer replicas than flexible tasks that can be delayed
(e.g. garbage collection). For example, in Paxos, a client
needs only one reply from any replica to proceed, but a
garbage collection requires f + 1 replicas to take a snap-
shot. While existing protocols try to ensure that, despite
failures, the system has enough replicas to execute even
flexible tasks, this may not be necessary: activating an
appropriate number of replicas to ensure the availability
of critical tasks and relying on lazy recovery for flexible
tasks may achieve both low cost and high availability.

These properties enable lazy recovery for both agree-
ment and execution, but in different ways: when an
active agreement node fails, a blank backup agreement
node can join the protocol instantly; when an active exe-
cution node fails, the system can proceed with remaining
active execution nodes (they execute critical tasks but de-
lay flexible tasks). In both cases, the system rebuilds the
state of a backup node in the background.

This paper formally studies the number of active nodes
required for availability. Here we highlight some results:

e For Paxos, we need f + 1 active agreement nodes and
active execution nodes.

e For BFT, when setting distinct bounds for omission
failures (#) and commission failures (r) [16] instead
of setting a unified f for both, we need u+r+ 1 ac-
tive execution nodes. This is smaller than the previous
2f + 1 lower bound, in a practical setting when u > r.

In order for our approach to work properly, there is
one additional challenge we need to address: although
recovery of backup nodes can be delayed, recovery still
has to be completed in a timely manner. Otherwise, long
recovery can hurt the durability of the system. Further-
more, delaying flexible tasks like garbage collection for
too long can eventually block the system. Recovery is
further complicated by the fact that it is performed in
parallel with executing new requests and they often com-
pete for resource. To address these challenges, we intro-
duce an adaptive recovery mechanism, which allows a
user to specify a deadline for recovery: our mechanism
makes best effort to meet the deadline while using the
remaining resource to process new requests. To achieve
this, it continuously monitors the progress of recovery
and adaptively adjusts resource allocation.

We have applied this idea to Paxos, a popular repli-
cation protocol in today’s datacenters, to build Thrifty-
Paxos, which can achieve the same guarantee as Paxos
with f fewer replicas. Our evaluation shows that Thrifty-
Paxos can achieve higher throughput and similar avail-
ability comparing to Paxos, despite the fact that Thrifty-
Paxos activates fewer replicas.

2 Background

State machine replication (SMR) models an application
as a deterministic state machine. For fault tolerance,
SMR deploys multiple replicas of an application’s state
machine on different machines. To ensure all replicas
are identical, SMR protocols run an agreement or con-
sensus protocol across replicas to decide the next request
to execute. These protocols can guarantee that, despite
failures, all correct replicas will reach the same decision.
To tolerate network failures, replicas need to log re-
quests during agreement, so that if a request is lost, the
corresponding replica can retrieve it from the log and
retransmit it. To ensure logs do not grow arbitrarily,
SMR protocols periodically require application’s state
machines to take snapshots of their states, promising that
they will never need earlier requests. The system can
then garbage collect log entries before the snapshot.
Previous works exploit features of SMR protocols to
reduce their cost.
On-demand instantiation. Most SMR protocols (e.g.
Paxos, PBFT, UpRight, etc) are designed for an asyn-
chronous environment where message delivery can be
delayed arbitrarily and clocks of machines can drift ar-
bitrarily because of asynchronous events such as net-
work partitions or machine overloading. SMR protocols
are designed to be safe (all correct replicas process the
same sequence of requests) despite failures and to be live
when message delivery is timely and clocks are reason-
ably synchronized.

While a replicated system needs a minimal number of
f+ 1 replicas to tolerate f failures, an asynchronous sys-
tem needs more replicas, because in an asynchronous en-
vironment, it is impossible to accurately know whether a
replica has failed or not. In this case, if the system has
only f -+ 1 replicas, and if one of them is not responding,
it is impossible for the system to decide how to proceed:
it is inappropriate to proceed with remaining ones be-
cause the unresponsive replica may just be temporarily
slow and in this case, the request has not been executed
by sufficient number of replicas; it is also inappropriate
to wait for the unresponsive replica, because the replica
may have actually failed and waiting may take for ever.

To solve this problem, asynchronous SMR protocols
incorporate more replicas and only expect a subset of
them to respond. Such design motivates the idea of on-
demand instantiation [35,56]: since the system needs
only a subset of replicas to respond, we can activate the
subset first. If all of them respond in time, the system
can make progress; if some of them become unrespon-
sive, we can activate the backup ones. Since machine
failures and asynchronous events are rare, this approach
can reduce the replication cost in most of the time.

On-demand instantiation can achieve the same safety
and liveness properties as the original approach, because
asynchronous SMR protocols are designed for an envi-
ronment where some of the replicas can be arbitrarily
slow: in such an environment, the on-demand instanti-
ation approach, which disables a subset of nodes, is fun-
damentally indistinguishable from the original approach
when some nodes are slow. However, as mentioned in
Section 1, previous works that adopt this idea suffer from
the availability problem that a backup replica may take a
long time to recover before it can function.

Separating agreement from execution. In SMR pro-
tocols, a replica can be logically separated into an agree-
ment node, which participates in agreement, and an exe-
cution node, which runs the application’s state machine.

Paxos made such separation when describing its pro-
tocol (agreement node and execution node are called ac-
ceptor and learner, respectively, in Paxos). Yin et.al. ob-
serve that for BFT protocols, the number of execution
nodes can be reduced to lower system cost [57]. UpRight
further refines this observation [16]. However, as men-
tioned in Section 1, this approach is not much helpful to
light applications whose agreement is the bottleneck; it
is also not effective to Paxos-like protocols.

3 Combine on-demand instantiation and
lazy recovery

Our approach incorporates on-demand instantiation to
reduce replication cost, and addresses its availability

problem by lazy recovery: when an active replica fails,
the system keeps processing requests while recovering a
backup replica in the background. Such combination can
achieve both low cost and high availability.

To incorporate lazy recovery, however, we must ensure
that the system is able to function correctly even when
part of the system is in recovery and thus only has partial
state—this is the major challenge of this work. The key
contribution of this paper is to identify that lazy recov-
ery is possible only when agreement node and execution
nodes are logically separated. When separated, they each
present a unique property that enables lazy recovery.

3.1 Instant activation for agreement node

An agreement protocol needs to decide the next request
to execute, and this task has the memoryless property that
an agreement node does not need to know prior requests
to decide the next one. Such memoryless property al-
lows a blank backup agreement node to join the protocol
instantly when an active one becomes unresponsive.

Number of active nodes for agreement. Suppose an
SMR protocol needs a maximum number of N4, agree-
ment nodes, in which f of them can fail. Also suppose
that the SMR protocol needs Nr’:‘orm o1 agreement nodes to
participate in agreement in the failure-free case. In most
SMR protocols, N4 = N4, .— f, because there is no
guarantee that more nodes can respond. However, some
protocols, such as Fast Paxos [33] and Zyzzyva [28], in-
troduce a fast path, which requires more replicas to re-
spond, to decide the next request with less latency. When
the fast path is not possible, these protocols resolve back
to traditional approaches. For these protocols, N4
could be larger than N4, — f.

Because a backup node can join agreement instantly,
the system should activate only Nf}orm 1 agreement nodes.
The safety and liveness of this approach is the same as
the original approach, as discussed in Section 2.
Availability. As long as the Nformgl agreement nodes
are correct and can communicate with each other, our
system can process requests correctly. When an agree-
ment node becomes unresponsive, our system activates
a backup node. To detect failures quickly, we use ag-
gressive techniques (Section 6), because asynchronous
replication does not rely on the accuracy of failure de-
tection for correctness. The activation only takes a few
messages. Therefore, the system will not halt for long
when an agreement node becomes unresponsive.

To avoid frequent conflict (different agreement nodes
propose different requests), many agreement protocols
elect one node as the leader to propose the next request.
When the leader fails, the system may halt for a while to
elect a new leader and rebuild its state. Both the original

protocols and our approach have to pay such cost.

3.2 Separating critical and flexible tasks
for execution node

The key observation that enables lazy recovery for exe-
cution nodes is that the number of replicas required to
execute critical tasks (e.g. executing a request) is some-
times fewer than that required to execute flexible tasks
(e.g. garbage collection). On the one hand, the sys-
tem should activate sufficient number of nodes so that,
despite failures, the system can always process critical
tasks; on the other hand, it does not need to be so conser-
vative for flexible tasks because they can be delayed.

Number of active nodes for execution. Suppose an
SMR protocol needs Nfri,iml execution nodes to per-
form critical tasks and needs Nflexible nodes to perform
flexible tasks. By following the previous idea, the sys-
tem should activate max(NL,;.q + f'sNfjoipi.) €Xecution
nodes. Once again, the safety and liveness of this ap-
proach is the same as the original approach, as discussed

in Section 2.

Availability. When all active execution nodes are cor-
rect and can communicate with each other, they can per-
form all tasks. When no more than f active nodes are
unresponsive, the system still has enough replicas to per-
form critical tasks. Therefore, the system can rebuild
backup execution nodes in the background without halt-
ing the system. Of course, the system may not be able to
perform flexible tasks until backup replicas are rebuilt.

3.3 Case studies

Table 1 shows the effectiveness of our approach when
applied to popular protocols.

Paxos. The standard Paxos protocol needs a maximum
of 2f + 1 replicas to tolerate asynchronous events and
f crash failures. Its agreement protocol sends requests
to all replicas and requires f + 1 of them to respond;
its execution requires only one execution node to reply
to the client (critical task) while requiring f + 1 execu-
tion nodes to perform a snapshot for garbage collection
(flexible task). By using the previous calculations, our
approach needs to activate f + 1 agreement nodes and
execution nodes .

Fast Paxos and Speculative Paxos [48] introduce a fast
path, which requires more than f 4 1 agreement nodes
to participate!, to commit requests with fewer rounds of
message exchanges. For these protocols, our approach
needs to activate more than f + 1 agreement nodes.

IFast Paxos can be configured in two ways: it can be configured to
have 2f 4 1 agreement nodes and f + ng + 1 of them must respond
for the fast path; it can also be configured to have 3f + 1 agreement
nodes and f + 1 of them must respond. We use the first configuration
in the paper for a fair comparison with other Paxos-like protocols.

Cheap Paxos [35] applies on-demand instantiation to
Paxos. It requires the same number of replicas as our
approach, but since it does not incorporate lazy recovery,
it suffers from the availability problem.

BFT. Practical Byzantine Fault Tolerance (PBFT) [13]
needs a maximum of 3f 4 1 replicas to tolerate f ar-
bitrary failures. Its agreement protocol sends requests
to all replicas and requires 2f + 1 of them to respond;
its execution requires f + 1 execution nodes to reply to
the client (critical task) while requiring also '+ 1 execu-
tion nodes to perform a snapshot for garbage collection
(flexible task). By using the previous calculation, our
approach needs to activate 2f 4 1 agreement nodes and
execution nodes.

Yin et. al. observe that when agreement and execution
are separated, a BFT protocol needs only 2f + 1 execu-
tion nodes. Our approach can reduce its agreement cost,
but cannot reduce its execution cost. Zyzzyva introduces
a fast path to commit requests with less latency, but since
it needs all 3f + 1 agreement nodes to respond for the
fast path, our approach cannot reduce its cost.

77 [56] applies on-demand instantiation to BFT pro-
tocols. It requires only f + 1 execution replicas, which
is even fewer than that of our approach, but it also suf-
fers from the availability problem. That says, being too
aggressive in cutting replicas may have a cost in avail-
ability. Our approach, instead, chooses a middle ground.

UpRight. UpRight makes a distinction between fail-
ures that can cause the system to become unavailable
(its number is represented by u) and failures that can
cause the system to become incorrect (its number is rep-
resented by r). Its conclusion is that we need a max-
imum of u+ r + max(u,r) + 1 agreement nodes and
r+ max(u,r) + 1 of them should respond in the agree-
ment protocol?; we need a maximum of u -+ max(u,r) + 1
execution nodes and r+ 1 of them should reply to the
clients (critical task) while max(u,r) + 1 of them should
perform snapshots for garbage collection (flexible task).
Both standard Paxos (u = f,r =0) and BFT (u =r = f)
can be viewed as an instance of UpRight.

By using previous calculations (f = u), our approach
needs to activate r + max(u,r) + 1 agreement nodes and
u+r—+1 execution nodes. Comparing to original Up-
Right, our approach can always reduce its agreement cost
and can reduce its execution cost when u > r. This con-
clusion shows that, when u > r, setting distinct « and r
can reduce replication cost comparing to using a unified
f = u. This is appealing because in most environments,
the possibility of crash failures is indeed much higher
than that of those bizarre failures, indicating u > r is a

2UpRight further separates agreement into two phases: authentica-
tion phase needs a maximum of u + r +max(u,r) + 1 nodes and order
phase needs a maximum of 2u+r+ 1 nodes. We only present the larger
number in the paper for simplicity.

Protocol Agreement Execution
Nr/r‘mx Nr?ormal - Ngctive Nrﬁax Nfritical Nflexible Nfctive
Paxos 2f+1 f+1 2f+1 1 f+1 f+1
Fast Paxos 2f+1 f14+1 2f+1 1 f+1 f+1
PBFT 3f+1 2f+1 3f+1 f+1 f+1 2f+1
Yin et.al. 3f+1 2f+1 2f+1 f+1 f+1 2f+1
Zyzzyva 3f+1 3f+1 2f+1 f+1 f+1 2f+1
UpRight | u+r+max(u,r)+1 | r+max(u,r)+1 | u+max(u,r)+1 | r+1 | max(u,r)+1 | u+r+1
Table 1: Required number of replicas for different protocols. N2,,: max number of agreement nodes; N4 - number
of agreement nodes in failure-free case; meve: number of active agreement nodes in our approach; NZ_ : max number

: . NE
of execution nodes; N, .-

: number of execution nodes for critical tasks; Nf.l exible- DUmMber of execution nodes for

flexible tasks; NE_. : number of active execution nodes in our approach.

active*

practical setting. Note that such opportunity to reduce
execution cost by setting distinct u and r does not exist
in the original UpRight protocol, because its execution
cost u +max(u,r) + 1 is equal to 2u+ 1 when u > r and
it is not different from the 2/ 4 1 bound of early work.

4 Adaptive recovery

Although recovery can be delayed, it has to be performed
in a timely manner for two reasons: first, data durabil-
ity is determined by how frequently machines fail and
how fast they can recover. Therefore, increasing recov-
ery time may lead to higher probability of data loss; sec-
ond, flexible tasks, such as garbage collection, cannot be
performed until recovery is complete. If they are delayed
for too long, eventually the system will be blocked.

In our approach, ensuring recovery speed is further
complicated by the fact that recovery is performed in par-
allel with executing requests and these two tasks often
compete for resource (e.g. network and disk bandwidth).

To complete recovery in a timely manner and to make
a balance between recovery and executing new requests,
this paper introduces an adaptive recovery mechanism. It
allows the administrator to specify a deadline for recov-
ery, which is determined by the required data durability
and the frequency of machine failures. Then adaptive
recovery attempts to meet the deadline with minimal re-
source while allocating all remaining resource to execut-
ing new requests.

In order for this approach to work, first, we need a
dynamic and fine-grain mechanism to control the re-
source dedicated to recovery. For this purpose, we split
the whole recovery into multiple recovery requests, each
fetching a subset of the state, and introduce a parameter
ILrec, which is defined as the system will execute I, client
requests after it executes a recovery request. If no client
requests arrive for a certain amount of time, however,
this constraint can be relaxed. This parameter allows our
approach to dynamically control the speed of recovery.

In order to meet the deadline, our approach tracks the

progress of recovery: during recovery, a backup node
needs to fetch state from an active node. The active node
knows the total size of the state to be transferred and
keeps track of how much data has already been trans-
ferred. It periodically checks the progress of recovery
by comparing [4cheddata g clapsedline ye e former
is smaller (larger) than the latter, it increases (decreases)
recovery speed by decreasing (increasing) I..
Agreement node recovery. A backup agreement node
needs to fetch missing log entries from the leader. In
this case, the leader will perform the above tracking and
adaptive control mechanism.

Execution node recovery. A backup execution node
needs to fetch both the latest snapshot from an active
execution node and the log entries afterwards from the
leader. In this case, both the active execution node and
the leader needs to perform the above tracking and adap-
tive control mechanism. Furthermore, since the system is
still processing new requests in the meantime, the backup
execution node will receive those requests. Since it can-
not execute them until the recovery is complete, it will
cache these new requests (first in memory and then on
disk if memory is full). Since these procedures all run in
parallel and may compete for resource, they may affect
each other, but our adaptive approach should be able to
achieve a balance given enough time.

Guarantees? Adaptive recovery makes best effort to
meet the deadline but cannot provide any guarantees for
several reasons: first, if the deadline is too close, the sys-
tem may not be able to meet the deadline even if it al-
locates all resources to recovery. Second, the adaptive
approach takes time to monitor progress and adjust re-
covery speed, so if the recovery time is too short, our ap-
proach may not be effective. Finally, our approach relies
on the assumption that the system throughputs when pro-
cessing client requests and recovery requests are reason-
ably stable. If they can change rapidly, because of either
hardware issues (e.g. contention on network) or software
issues (e.g. some requests take much longer than others
to process), our mechanism may not be accurate.

5 ThriftyPaxos

To demonstrate the effectiveness of our approach, we ap-
ply it to Paxos, a popular replication protocol, to build
ThriftyPaxos. In this section, we present the detailed pro-
tocol of ThriftyPaxos. As one can imagine, it bears a sig-
nificant resemblance to the standard Paxos protocol. For
completeness, we present the whole ThriftyPaxos proto-
col, but we highlight the different part.

5.1 Overview

Paxos incorporates 2f + 1 replicas. Its key idea is that
when a request is agreed by f + 1 replicas as the next re-
quest, the request becomes stable, which means the de-
cision will not be changed by future failures. Then all
execution nodes execute the stable request.

A ThriftyPaxos service follows the same idea. It log-
ically separates replicas into 2f + 1 agreement nodes
and execution nodes (a pair of agreement and execution
nodes can be collocated on the same machine or even in a
single process). By following the calculations in Section
3, ThriftyPaxos activates f 4 1 of them and reserves f
of them as backup (standard Paxos activates all of them).

To order client requests, ThriftyPaxos tries to assign
a unique slot number to each client request: a client re-
quest with a lower slot number is ordered before one with
a higher slot number. The safety property requires that
each slot can be assigned to at most one client request.

In most of the time, the system elects one agreement
node as the leader, which proposes the next request to
execute. When failures or asynchronous events happen,
new leaders may be elected, even if the old leader is still
alive. Different leaders may make different proposals for
the same slot, and to distinguish them, each leader is as-
signed a unique epoch number and it attaches this epoch
number to each proposal it makes. A later elected leader
has a higher epoch number than an early leader.

5.2 Basic protocol

@ A client sends a request to the leader.

A client can have multiple outstanding requests and
thus the system needs a unique identifier for each request
to match a reply to a request. A classic approach to gen-
erate request ID is to combine client ID with the number
of requests the client has already sent.

If the client does not get a reply in time, either because
some messages are lost or because some replicas fail, it
resends those request to all replicas.

@ The leader checks the request and if the check
passes, the leader proposes it as the next request.

The leader needs to check whether this is the expected
request from the corresponding client. In order to check

that, the leader maintains the last request ID it has pro-
posed for each client. There are four possible cases:

@) If request1D = lastRequestID|client] + 1, then this
is the appropriate request to propose. The leader sends
a proposal < epoch,slot,request > to f+ 1 agreement
nodes including the leader itself (standard Paxos sends
to 2f + 1 agreement nodes). The leader then needs to
update corresponding state, such as slot.

@) If requestID > lastRequestID|client] + 1, it means
some previous client’s requests are lost. In this case, the
leader can either cache the request or discard it if the
cache is full. In either case, the leader needs to wait for
the client to resend the missing requests.

@3 If requestID < lastRequestID|client] + 1 and the
request is in the leader’s pending proposals, it means that
the leader is processing the request. In this case, the
leader performs no action.

If requestID < lastRequestID|client] + 1 and the
request is not in the leader’s pending proposals, it means
the leader has already finished proposing this request.
This can happen if some messages were lost so that the
client did not receive the reply. In this case, the leader
forwards the request to execution nodes (see Step).

@ When an agreement node receives a proposal, it
decides whether to accept the proposal.

@ If proposal.epoch < this.epoch or if the agree-
ment node is not active, the agreement node discards the
proposal and notifies the leader.

@ Otherwise, the agreement node accepts the pro-
posal by logging it to disk and sending an acknowledge-
ment to the leader. If proposal.epoch > this.epoch, the
agreement node also updates its own epoch. Note that
the agreement node can accept proposals out of order.

@ The leader waits for f+ 1 acknowledgements.

If any agreement node responds that it has accepted a
proposal with a higher epoch number, this leader gives up
and will not process any further requests from the clients.

If any agreement node times out, the leader picks up
one backup agreement node and sends an ACTIVATE

command to it (standard Paxos, of course, does not need

this command because all replicas are active). Then the

leader resents all pending proposals.

@ The leader sends the agreed request to all active
execution nodes.

If there are less than f + 1 active execution nodes, the
leader will send an ACTIVATE command to some backup

execution nodes (standard Paxos does not need this).

@ An execution node executes the request.

An execution node needs to execute requests in order.
In order to achieve that, it maintains the last slot that it
has already executed. When receiving a request, it first
checks the slot number of the request.

If request.slot = lastslot + 1, the request is the
next to execute. The execution node executes the request

and sends the reply to the client. It then checks whether
there are any following requests in the cache () that
can be executed.

If request.slot <= lastslot, then this request has
already been executed. This might happen if the reply
message got lost and the client resent the request. In
this case, the execution node should resend the reply to
the client. To achieve that, the execution node needs to
maintain a reply cache for replies it has already sent. To
garbage collect replies, a client can piggyback in each of
its request the ID of the latest received reply.

If request.slot > lastslot + 1, the execution node
caches the request or stores the request to disk if the
cache is full. This could happen if a previous message
was lost or the execution node is in recovery. For the
former case, the execution node asks the leader to resend
missing requests. For the later case, the execution node
has to wait for the recovery to complete.

To garbage collect logs on the agreement nodes
(@), ThriftyPaxos requires execution nodes to periodi-
cally take snapshots of their states, promising that they
will not need earlier requests in the future. Thrifty-
Paxos performs garbage collection when f + 1 execution
nodes complete taking snapshots (standard Paxos asks an
agreement node to garbage collect its log when its corre-
sponding execution node takes a snapshot. This is not
different from ThriftyPaxos when f 4 1 execution nodes
are active, but since in ThriftyPaxos, sometimes there
could be different number of agreement nodes and ex-
ecution nodes, we use a more explicit rule).

5.3 Failure recovery

Recovering execution nodes. When an execution
node is not responding, the leader sends an ACTIVATE
command to a backup execution node, asking it to re-
build its state. Meanwhile, ThriftyPaxos proceeds with
the remaining active execution nodes. To rebuild state,
the backup execution node may need to fetch the latest
snapshot from an active execution node and fetch follow-
ing logs from the leader. Since the system is processing
clients’ requests during recovery, and the backup node
cannot process them at the moment, it will cache these
requests first in memory and then in a log file on disk
if the memory buffer is full. After state transfer is com-
plete, the backup node needs to load the snapshot and
replay all logs afterwards.

We have applied adaptive recovery at the leader and at
the active execution node to control the recovery speed
of the backup execution node. When trying to meet the
deadline, adaptive recovery considers recovery as com-
plete when state transfer is done, because at that moment,
the backup node has the same state as an active one: this
means data durability is fully recovered and the system

can garbage collect logs on agreement nodes. Therefore,
later operations, including loading snapshot and replay-
ing logs, are not considered as part of recovery.
Recovering agreement nodes. When a non-leader
agreement node is not responding, the leader will send an
ACTIVATE command to a backup agreement node, ask-
ing it to join the agreement protocol immediately. Mean-
while, to restore data durability, the backup node fetches
missing logs from the leader in the background. We
have applied adaptive recovery at the leader to control
the speed of fetching missing logs.

When the leader is not responding, a new leader is
elected. The new leader collects logs from other agree-
ment nodes and re-proposes pending requests. Thrifty-
Paxos uses the same protocol as standard Paxos for
leader switch (backup agreement nodes also need to par-
ticipate in a leader switch). This part is out of the con-
trol of adaptive recovery, because the system is blocked
anyway. The developer can make a trade-off between
performance and availability by setting the snapshot in-
terval, since only requests after the last snapshot need to
be re-proposed durng a leader switch. Note that this issue
exists in both ThriftyPaxos and standard Paxos.

6 Implementation

We have implemented ThriftyPaxos from scratch in Java.
This section discusses some implementation details.
Failure detection. A highly available system must be
able to detect failures quickly. Like standard Paxos,
ThriftyPaxos does not rely on the accuracy of failure de-
tection for safety and thus can use aggressive approaches
(e.g. short timeout) for better availability. Our experi-
ments, however, show that if timeout interval is too short,
performance can be unstable, because even a minor ab-
normal event, such as a long disk write, can trigger an
unnecessary recovery. Our implementation incorporates
ideas from accurate failure detection techniques [40]:
when failures can be detected for certain, our system
should take actions immediately. To cover failures that
cannot be accurately detected, we use a short but not too
aggressive timeout (5 seconds). Our current implementa-
tion only incorporates part of the functionalities of those
accurate failure detection techniques, and we leave the
full incorporation as future work.

Out-of-order logging. Agreement nodes may need to
log requests out of order on disks. To achieve efficient
logging, ThriftyPaxos incorporates a design that is sim-
ilar to SSTable in Bigtable [15]: if the slot number of
the new request is larger than the last one in the current
file, ThriftyPaxos appends it to the current file; other-
wise, ThriftyPaxos closes the current file, creates a new
one, and appends the next log entry into the new file.
Such design guarantees that each log file is sequential,

and thus it is simple to perform operations like log scan
(merge sort) and garbage collection. Furthermore, when
there are no out-of-order requests, logging is fully se-
quential and thus can fully utilize a hard drive.

Leader election. During leader switch, the new leader
needs to collect logs from other agreement nodes and re-
propose pending requests (Section 5.3). To reduce I/O
traffic during leader election, ThriftyPaxos gives a pref-
erence to an active agreement node as the new leader,
because it has more logs compared to a backup node.
When to start recovery. Previous study shows that it
may be a waste of resource to start recovering a node
right after it fails, because a crashed node has is likely to
come back soon. In practice, Google starts to recover a
node if it cannot come back in 15 minutes [23]. Our ap-
proach follows the same idea: when a backup node fails,
ThriftyPaxos waits a while to see whether it can come
back before triggering recovery. We use a relatively short
interval (5 minutes) to shorten the length of experiments.

7 Evaluation

Our evaluation tries to answer three questions:

e What is the performance of ThriftyPaxos, when there
are no failures?

e What is the availability of ThriftyPaxos, when failures
occur?

e Can adaptive recovery meet the deadline under differ-
ent settings?

To address these questions, we have applied Thrifty-
Paxos to replicate H2 [25], a database system, and Re-
moteHashMap, a benchmark application built by us.
H2. H2 is alight-weight database system implemented
in Java. It is often used as an embedded data store for
larger projects, such as Hadoop [26]. To apply Thrifty-
Paxos to H2, we have modified H2 to send and receive
messages through ThriftyPaxos. We configure H2 to
store all tables in memory while keeping logs and snap-
shots on disks. To achieve quick snapshot, we configure
H2 to store data in btrfs, a Linux file system that supports
copy on write (COW) snapshot: whenever an execution
node needs to perform a snapshot, it asks btrfs to perform
a snapshot, which usually takes only several seconds.
We ran TPC-C [52] over H2 to measure its performance.
To avoid non-determinism, we ran H2 in single-threaded
mode, which of course limits its performance. Efficient
deterministic multithreading is an orthogonal topic that
has been discussed in other works [2,7, 8, 19, 20,41] and
we leave the incorporation as future work.
RemoteHashMap. To test ThriftyPaxos under various
workloads, we have built RemoteHashMap, an applica-
tion that allows clients to get and set key value pairs on
a remote server. RemoteHashMap allows us to change

ThriftyPéxos —
Paxos q

80 —I—?—
70 T

60 t
50 |
40 T
30 t
20 |

Throughput (transactions/s)

Scale=5 Scale=20

Figure 1: Throughput of TPC-C over replicated H2

200000 T ——— .
- ThriftyPaxos C—
Paxos ZZZZ2
= Zookeeper C55SX)
2 150000 1
8
=
o
£
= 100000 7 1
£ N
=)
3
= 50000 1
F‘
S YIS VARG ST SYRRA St
,/\ I’\ L\ L\ L\ ,/\
\J\ \Zf \/6 \\)\/ \Zf \/6
% % % %

Figure 2: Throughput of writing to replicated Remote-
HashMap (v is value size). We show ZooKeeper as a
comparison.

system parameters (e.g. request size, snapshot size) arbi-
trarily to test different aspects of ThriftyPaxos.

We run all H2 experiments on three Dell R730 ma-
chines, which are equipped with 16 cores, 64GB of mem-
ory, one SSD drive, and seven hard drivers. We store
H2’s data on the SSD drive and store agreement nodes’
data on one hard drive. We run all RemoteHashMap ex-
periments on 7 Dell R220 machines, which are equipped
with 8 cores, 16GB of memory, and two hard drivers. We
store RemoteHashMap’s data on one hard drive and store
agreement nodes’ data on the other hard drive.

We compare ThriftyPaxos to standard Paxos and
Cheap Paxos. We implement standard Paxos and Cheap
Paxos by slightly modifying ThriftyPaxos: standard
Paxos chooses all 2f + 1 replicas as active ones; Cheap
Paxos sets /.. to 0 during recovery, indicating it cannot
execute client requests until recovery completes. In all
experiments, we collocate an agreement node and an ex-
ecution node on a same machine.

7.1 Performance

Our first set of experiments aims at comparing the perfor-
mance of ThriftyPaxos to that of standard Paxos, when
there are no failures. Cheap Paxos’ protocol in the
failure-free case is exactly the same as ThriftyPaxos, so
we do not include it in the comparison.

—_ 250000 ' start 1 finish [start 1 finish i
B4 200000 ! recovery ! ' recovery v recovery ' ' recovery !
Z)))) I))
IVWNMVWASN e AV WAN A AV | A%
g 150000 VA
: W ! L Mgl /
= i | A ! ! " h
% 100000 kil ‘\ /j \ \/«A/\’\J‘ Kill | ‘I finish | LA \
2 node2' A ! ! nodel '| [re-propose ! ! !
£ s : A ' Enieh . Y . finish
0 . . loading state . . . loading state
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (seconds)
(a) ThriftyPaxos
- 250000 start + finish start + finish
B4 recovery ! 'recovery ' recovery ! ! recovery
H 200000 M [\ :
E ™MMM VN o q ! !
5
£ 150000 kil ¥ M ' ' kill 1 1 [finish | ' '
‘g'- node2 L ! ! nodel ' '|re-propose ! ! !
£ 100000 iy, \ W V , \ W
s ! ! ! l !) !
]
£ 50000 ; N \Tinish ¥ ! 1 finish
0 ' ' 'loading state : : , loading state
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (seconds)
(b) Standard Paxos
230000 Tinish Tinish
B4 'Tfecovery 're¢overy
Z 200000) I [v
T 10000 vkwﬁv'\/\’\vm [W e \
£ 100000 [T - Kill| " finish |
H 50000 node2' ' nodel'| 're-prfpbse
E i | finish | ifinish
0 ') 'loading state L Joading state
200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (seconds)
(c) Cheap Paxos

Figure 3: Availability of ThriftyPaxos, standard Paxos, and Cheap Paxos (f=1; nodel is the leader; v=512b).

As shown in Figure 1, when running TPC-C over H2,
the performance of ThriftyPaxos and standard Paxos are
almost identical. This is because the bottleneck of the
system lies in the execution of requests as a result of
single-threaded execution: our profiling shows that one
CPU core is fully utilized.

Figure 2 shows the throughput of writing key-value
pairs to RemoteHashMap, whose execution is relatively
light and agreement is the bottleneck. In this case,
ThriftyPaxos outperforms standard Paxos by 73% to
88%, because in ThriftyPaxos, the leader, which is the
bottleneck, only needs to send messages to f replicas,
while in standard Paxos, the leader needs to send to 2f.
We also show the throughput of ZooKeeper [27], a ma-
ture open-source software whose update protocol is sim-
ilar to standard Paxos. Since we are interested in agree-
ment throughput, we disable the “sync” call when log-
ging to disk for all systems. ZooKeeper cannot serve
as a direct comparison to ThriftyPaxos, because they
have different features and optimizations. We show
ZooKeeper’s throughput only to present that our imple-
mentation provides a reasonable throughput.

7.2 Availability

Our second set of experiments compare the availabil-
ity of ThriftyPaxos to that of standard Paxos and Cheap

Paxos, when failures occur.

We use RemoteHashMap in this set of experiments,
because RemoteHashMap’s much higher throughput cre-
ates a higher pressure on network and disk I/Os, incur-
ring more contention against recovery. To measure avail-
ability, we kill a non-leader replica at 300 seconds, and
kill the leader at 1400 seconds, for all three systems.
Since an agreement node and an execution node are col-
located on the same machine, both of them will be killed.

As shown in Figure 3, the behavior of ThriftyPaxos
and standard Paxos are quite similar: when a non-leader
replica fails, the system can continue processing re-
quests; when the leader fails, the system needs to elect
a new leader, which may block the system for a short
while. In either case, since the failed replica does not
come back in five minutes, the system needs to rebuild its
state on another replica: rebuilding incurs network and
disk I/Os, degrading system performance. The behaviors
of ThriftyPaxos and standard Paxos are different in two
ways: first, after a replica fails in standard Paxos, system
throughput jumps. This is because standard Paxos needs
to send fewer messages after a failure. ThriftyPaxos, on
the other hand, has already exploited this opportunity in
the failure-free case and thus its throughput remains sta-
ble after a failure. Second, ThriftyPaxos’ loading time
after recovery is slightly longer than that of standard
Paxos. This is because ThriftyPaxos’ throughput during

250000

200000

start, | finish
recovery 1 i recovery
T

\ finish
11 Tecovery
!

150000 ANVP/\M\«/\N‘\VNV\AH : N\MMWAN\A:‘WWWWVW\W\MVMW

100000 il
agreement2 !
50000

Throughput (requests/s)

0

1400

0 200 400 800 1000 1200 1600 1800 2000 2200 2400
Time (seconds)
(a) Impact of recovering agreement node
- 250000 start + finish ' start 1 + finish
3 200000 ' recovery ' ' recovery ' recovery ' ' recovery '
g LAWNAY N 1 L\ IANSAMAMAND W 1 A VYV
et - ‘ Y -
£ 100000 [N : | [N ‘ v, ‘
g 50000 exec2' ! ! exec3' ! ! !
E | \ \ \ finish | \ Y 1 finish
: . . , loading state ! ! loading state

0
200

400 600

800

1000 1200 1400

Time (seconds)

1600

1800 2000

2200 2400

(b) Impact of recovering execution node

Figure 4: Impact of recovering agreement node and recovering execution node

recovery is higher than that of standard Paxos (because,
once again, ThriftyPaxos sends fewer messages for each
request), and thus ThriftyPaxos needs to replay more log
entries afterwards.

Cheap Paxos shows a different behavior: when either
replica fails, Cheap Paxos needs to rebuild its state be-
fore it can process new requests. Therefore, the system
is halted during node recovery. While its recovery takes
78-96 seconds in our experiments to transfer about 8GBs
of state (including both snapshot and following logs), it
may halt longer when application’s state is larger.

We further decouple recovery of agreement node and
recovery of execution node to understand their individ-
ual impact. As shown in Figure 4, recovery of execution
node certainly has a bigger impact on performance, be-
cause it needs to transfer more state. Recovery of agree-
ment node is lighter in general, but the failure of the
leader can halt the system for a short while.

7.3 Adaptive recovery

Our last set of experiments measures whether adaptive
recovery can meet the deadline. We set different dead-
lines and sizes of snapshots for this set of experiments.

Figure 5 shows the impact of different recovery dead-
lines. As one can observe, closer deadline, which means
the system must dedicate more resource to recovery, can
cause a sharper degradation of performance during re-
covery: the average throughput of deadline 100, 200, and
300 are 22240, 74690, and 99339, respectively.

Figure 6 shows the impact of different snapshot sizes.
As one can observe, bigger snapshot, which means the
system must dedicate more resource to recovery, can
cause a sharper degradation of performance during re-
covery. Once again, our adaptive recovery mechanism
successfully meets the deadline in all experiments.

10

In both figures, a higher throughput during recovery
increases the time to load state afterwards. This is sim-
ply because higher throughput during recovery increases
the number of log entries to be replayed after recovery.
Faster disks or a larger memory buffer may reduce such
replaying time.

Our adaptive recovery mechanism successfully meets
the deadline in all experiments. Although these results
may not be extended to other applications, as discussed
in Section 4, they demonstrate the efficacy of adaptive re-
covery for applications that can provide a stable through-
put when processing client requests and recovery re-
quests. Furthermore, in all experiments, the recovery
completion time is close to the deadline. This demon-
strates that adaptive recovery achieves its goal: to meet
the deadline with minimal resource while using all re-
maining resource to process new requests.

8 Related work

While Section 2 already presents important related works
in detail, this section presents a broader survey.

State machine replication. State machine replication
(SMR) [49] replicates an application’s state machine on
multiple machines to tolerate failures. Based on the types
of failures it can tolerate, SMR protocols can be broadly
classified into two categories: the Paxos family [31, 32,
45] that can tolerate machine crashes and timing errors,
and the Byzantine Fault Tolerance (BFT) family [1, 6, 13,
16, 18, 28, 36] that can tolerate arbitrary errors.

Separating agreement from execution. Paxos sepa-
rates agreement (acceptors) from execution (learners) to
clarify its protocol [14,31,32,37,46,53]. Yinet. al. [57]
observe that for BFT protocols, the number of required

_ 20000 Startifinish
g 200000 recovery retovery
Z o
: WA
g 150000 VAV‘VMV '\
: \
£ 100000 i] V.
3 node2! A !
£ 50000 | finish
E loading s
o loading state
200 400 600 800 1000 1200 1400
Time (seconds)
(a) Deadline=100 seconds
_ 20000 start; ~finish
% 200000 ICLOVSI’) recovery
g 150000 mm A I WAV RANAA
=
2 100000
< kil \J \/W
H node2!
g 50000
E] i finish
= loadi
0 oading state
200 400 600 800 1000 1200 1400
Time (seconds)
(b) Deadline=200 seconds
— 250000 start 1finish '
g 200000 YECOVCI)/ recovery
p {W\/‘/W‘\/\Mf\—] 1
g 150000 [A\Am \ [V
g N /\/\’\ /
£ 100000 i \/\/ \/
2 50000 node2'
£ i finish.
=
0 loading state'
200 400 600 800 1000 1200 1400

Time (seconds)

(c) Deadline=300 seconds

Figure 5: Recovery with different deadlines (snapshot
size=5G; node?2 is a non-leader replica)

execution replicas could be fewer than that of the agree-
ment nodes. This observation is inherited in later works,
such as UpRight [16], Zyzzyva [28], and ZZ [56].

On-demand instantiation. Cheap Paxos [35] and
77 [35] activate minimal number of replicas first and ac-
tivate backup ones when active ones are unresponsive.
However, they require a backup node to rebuild its state
before it can process requests, suffering from the avail-
ability problem. Distler et al. [22] proposes to split appli-
cation state into multiple objects and perform on-demand
instantiation for each object: this approach can alleviate
the availability problem, but since it needs to maintain
a log for each object, the space overhead is significantly
magnified. Parallel recovery techniques [15,47] can ef-
fectively reduce recovery time and thus can alleviate the
availability problem of on-demand instantiation, but re-
covering a node right after it fails is a waste of resource,
since most crashed nodes can come back soon [23].

Lazy recovery. Lazy recovery [29,30] is widely used
in many systems. For example, Google File System [24]
starts recovering a failed node if it cannot come back in
15 minutes. Silberstein et.al. [51] applies lazy recovery
to erasure-coding systems to reduce recovery overhead.

Other optimizations. Vertical Paxos [34] proposes to
strengthen primary backup protocols with the help of
a centralized Paxos service. Our approach provides a

11

250000

1finish
'recovery

starty
recovery '

150000 WMW\ ‘ IJ/’WVW’\

200000

Throughput (requests/s)

100000 il W \’ \ AJ
node2; NNV
50000 ' finish1
. ! ' loading state'
200 400 600 800 1000 1200 1400

Time (seconds)

(a) Snapshot size=1G

2
250000 1finish

L/J “\NN

1finish

start:
recovery !

N’\NMN\/"’\W\

150000 ‘

200000

100000 i

node2!
50000 -

Throughput (requests/s)

0 'loading state
200 400 600 800 1000 1200 1400
Time (seconds)
(b) Snapshot size=5G
. 250000 start: ifinish 1
\é 200000 recovery' recovery
g AN | MWV M
g 150000 M/\/V“\‘ "\ IV
z |)
£ 100000 ! [\
2 50000 node2' !
£ finish
= "
0 ! 'loading state
200 400 600 800 1000 1200 1400

Time (seconds)
(c) Snapshot size=15G

Figure 6: Recovery with different snapshot sizes (dead-
line=200 seconds; node?2 is a non-leader replica)

more general approach that does not require an additional
Paxos service and that is applicable to BFT protocols.

Falcon [40] and its following works [38,39] attempt
to build accurate failure detectors, which make Paxos
unnecessary. However, they rely on routers to monitor
the status of machines and thus can become unavailable
when routers fail, which can happen in today’s datacen-
ters [23]. Furthermore, it is inapplicable to BFT systems.

Gaios [9] and ZooKeeper [27] execute read-only re-
quests on only one replica. Fast Paxos [33], Speculative
Paxos [48], and Zyzzyva [28] introduce a fast path to re-
duce latency. Mencius [42] and EPaxos [43] allow multi-
ple leaders to propose requests in parallel to achieve load
balancing. These optimizations are orthogonal to our ap-
proach, although they may affect the effectiveness of our
approach, as discussed in Section 3.

9 Conclusion

Whether to pay the cost of a strong replication protocol
has been a painful question for developers. Instead of in-
venting new protocols, this paper presents a general ap-
proach to reason about the necessary conditions for cor-
rectness and availability in existing protocols. It shows
that, with a deeper understanding of existing protocols,
we can reduce their replication cost while maintaining
their correctness and availability properties.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

Michael Abd-El-Malek, Gregory R. Ganger,
Garth R. Goodson, Michael K. Reiter, and Jay J.
Wylie. Fault-Scalable Byzantine Fault-Tolerant
Services. In SOSP, 2005.

Amittai Aviram, Shu-Chun Weng, Sen Hu, and
Bryan Ford. Efficient system-enforced determin-
istic parallelism. In OSDI, 2010.

Jason Baker, Chris Bond, James C. Corbett, JJ Fur-
man, Andrey Khorlin, James Larson, Jean-Michel
Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. Megastore: Providing Scalable, Highly
Available Storage for Interactive Services. In
CIDR, 2011.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan
Prabhakaran, Ted Wobber, Michael Wei, and
John D. Davis. CORFU: A Shared Log Design for
Flash Clusters. NSDI'12, 2012.

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wob-
ber, Ming Wu, Vijayan Prabhakaran, Michael Wei,
John D. Davis, Sriram Rao, Tao Zou, and Aviad
Zuck. Tango: Distributed Data Structures over a
Shared Log. SOSP ’13.

Rida A. Bazzi. Synchronous Byzantine quorum
systems. Distributed Computing, 13(1):45-52,
2000.

Tom Bergan, Owen Anderson, Joseph Devietti,
Luis Ceze, and Dan Grossman. CoreDet: a com-
piler and runtime system for deterministic multi-
threaded execution. SIGARCH Comput. Archit.
News, 2010.

Tom Bergan, Nicholas Hunt, Luis Ceze, and
Steven D. Gribble. Deterministic process groups
in dOS. In OSDI, 2010.

William J. Bolosky, Dexter Bradshaw, Randolph B.
Haagens, Norbert P. Kusters, and Peng Li. Paxos
Replicated State Machines as the Basis of a High-
Performance Data Store. In NSDI, 2011.

Thomas C. Bressoud and Fred B. Schneider.
Hypervisor-based Fault Tolerance. ACM Transanc-
tions on Computer Systems, 14(1):80-107, Febru-
ary 1996.

Navin Budhiraja, Keith Marzullo, Fred B. Schnei-
der, and Sam Toueg. Primary-Backup Protocols:
Lower Bounds and Optimal Implementations. In
CDCCA, 1992.

12

[12]

[13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Ni-
lakantan, Arild Skjolsvold, Sam McKelvie, Yikang
Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin
Simitci, Jaidev Haridas, Chakravarthy Uddaraju,
Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian
Fahim ul Haq, Muhammad Ikram ul Haq, Deepali
Bhardwaj, Sowmya Dayanand, Anitha Adusumilli,
Marvin McNett, Sriram Sankaran, Kavitha Mani-
vannan, and Leonidas Rigas. Windows Azure Stor-
age: a highly available cloud storage service with
strong consistency. In SOSP, 2011.

Miguel Castro and Barbara Liskov. Practical
Byzantine fault tolerance and proactive recov-
ery. ACM Transanctions on Computer Systems,
20(4):398-461, November 2002.

T. Chandra, R. Griesmer, and J. Redstone. Paxos

made live — an engineering perspective. In Proc.
26th PODC, June 2007.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: A Distributed Storage System for
Structured Data. In OSDI, 2006.

Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Tay-
lor Riché. UpRight Cluster Services. In SOSP,
2009.

James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, J. J. Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander
Lloyd, Sergey Melnik, David Mwaura, David Na-
gle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-
sushi Saito, Michal Szymaniak, Christopher Tay-
lor, Ruth Wang, and Dale Woodford. Spanner:
Google’s Globally-Distributed Database. In OSDI,
2012.

James Cowling, Daniel Myers, Barbara Liskov, Ro-
drigo Rodrigues, and Liuba Shrira. HQ Replica-
tion: A Hybrid Quorum Protocol for Byzantine
Fault Tolerance. In OSDI, 2006.

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos Made Transparent. In SOSP,
2015.

Heming Cui, Jingyue Wu, John Gallagher,
Huayang Guo, and Junfeng Yang. Efficient de-
terministic multithreading through schedule relax-
ation. In SOSP, 2011.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,
Mike Feeley, Norm Hutchinson, and Andrew
Warfield. Remus: High Availability via Asyn-
chronous Virtual Machine Replication. In NSDI,
2008.

Tobias Distler and Riidiger Kapitza. Increasing
Performance in Byzantine Fault-Tolerant Systems
with On-Demand Replica Consistency. In Eurosys,
2011.

Daniel Ford, Francois Labelle, Florentina I.
Popovici, Murray Stokely, Van-Anh Truong, Luiz
Barroso, Carrie Grimes, and Sean Quinlan. Avail-
ability in Globally Distributed Storage Systems. In
0SDI, 2010.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google file system. In SOSP, 2003.

H2. The H2
http://www.h2database.com.

home page.

Hadoop. http://hadoop.apache.org/core/.

Patrick Hunt, Mahadev Konar, Flavio P. Junqueira,
and Benjamin Reed. ZooKeeper: Wait-free Coordi-
nation for Internet-scale Systems. In USENIX ATC,
2010.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin,
Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine Fault Tolerance. In SOSP,
2007.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat.
Providing high availability using lazy replication.
ACM Trans. Comput. Syst., 10(4):360-391, 1992.

Rivka Ladin, Barbara Liskov, and Liuba Shrira.
Lazy replication: exploiting the semantics of dis-
tributed services. In Proceedings of the ninth an-
nual ACM symposium on Principles of distributed
computing, PODC 90, pages 43-57, New York,
NY, USA, 1990. ACM.

Leslie Lamport. The Part-time Parliament. ACM
Transactions on Computer Systems, 16(2):133—
169, May 1998.

Leslie Lamport. Paxos Made Simple. ACM
SIGACT News (Distributed Computing Column),
32(4):51-58, December 2001.

Leslie Lamport. Fast paxos. Distributed Comput-
ing, 19(2):79-103, October 2006.

13

[34]

[35]

[36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]
[45]

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou.
Vertical paxos and primary-backup replication. In
Proceedings of the 28th ACM Symposium on Prin-
ciples of Distributed Computing, PODC °09, 2009.

Leslie Lamport and Mike Massa. Cheap Paxos. In
DSN, 2004.

Leslie Lamport, Robert Shostak, and Marshall
Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Sys-
tems, 4(3):382—401, July 1982.

Butler Lampson. The abcds of paxos. In PODC
'01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing,
page 13, New York, NY, USA, 2001. ACM.

Joshua B. Leners, Trinabh Gupta, Marcos K. Aguil-
era, and Michael Walfish. Improving availability
in distributed systems with failure informers. In
10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 427—
441, Lombard, IL, 2013. USENIX.

Joshua B. Leners, Trinabh Gupta, Marcos K. Aguil-
era, and Michael Walfish. Taming uncertainty in
distributed systems with help from the network. In
Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, pages 9:1-9:16,
New York, NY, USA, 2015. ACM.

Joshua B. Leners, Hao Wu, Wei-Lun Hung, Mar-
cos K. Aguilera, and Michael Walfish. Detecting
Failures in Distributed Systems with the Falcon Spy
Network. In SOSP, 2011.

Tongping Liu, Charlie Curtsinger, and Emery D.
Berger. Dthreads: efficient deterministic multi-
threading. In SOSP, 2011.

Yanhua Mao, Flavio P. Junqueira, and Keith
Marzullo. Mencius: building efficient replicated
state machines for WANSs. In OSDI, 2008.

Tulian Moraru, David G. Andersen, and Michael
Kaminsky. There is more consensus in egalitarian
parliaments. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles,
SOSP 13, pages 358-372, New York, NY, USA,
2013. ACM.

MySQL. http://www.mysql. com.

B. Oki and B. Liskov. Viewstamped replication:
A general primary copy method to support highly-
available distributed systems. In Proc. 7th PODC,
1988.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Diego Ongaro and John Ousterhout. In search of
an understandable consensus algorithm. In 2014
USENIX Annual Technical Conference (USENIX
ATC 14), pages 305-319, Philadelphia, PA, June
2014. USENIX Association.

Diego Ongaro, Stephen M. Rumble, Ryan
Stutsman, John Ousterhout, and Mendel Rosen-
blum. Fast Crash Recovery in RAMCloud. In
SOSP, 2011.

Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing
distributed systems using approximate synchrony
in data center networks. In 12th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI 15), pages 43-57, Oakland, CA, May
2015. USENIX Association.

Fred B. Schneider. Implementing Fault-tolerant
Services Using the State Machine Approach: A Tu-
torial. ACM Computing Surveys, 22(4):299-319,
December 1990.

Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The Hadoop Distributed
File System. In MSST, 2010.

Mark Silberstein, Lakshmi Ganesh, Yang Wang,
Lorenzo Alvisi, and Mike Dahlin. Lazy means
smart: Reducing repair bandwidth costs in erasure-
coded distributed storage. In Proceedings of Inter-
national Conference on Systems and Storage, SYS-
TOR 2014, pages 15:1-15:7, New York, NY, USA,
2014. ACM.

Transaction Processing Performance Council. The
TPC-C home page. http://www.tpc.org/tpec/.

Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Comput. Surv.,
47(3):42:1-42:36, February 2015.

Robbert van Renesse and Fred B. Schneider. Chain
Replication for Supporting High Throughput and
Availability. In OSDI, 2004.

Yang Wang, Lorenzo Alvisi, and Mike Dahlin.
Gnothi: Separating Data and Metadata for Efficient
and Available Storage Replication. In USENIX
ATC, 2012.

Timothy Wood, Rahul Singh, Arun Venkataramani,
Prashant Shenoy, and Emmanuel Cecchet. ZZ and
the Art of Practical BFT. In Eurosys, 2011.

14

[57] Jian Yin, Jean-Philippe Martin, Arun Venkatara-

mani, Lorenzo Alvisi, and Mike Dahlin. Separat-
ing Agreement from Execution for Byzantine Fault
Tolerant Services. In SOSP, 2003.

