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Abstract—Accelerating High-Performance Linkpack (HPL)
on heterogeneous clusters with multi-core CPUs and GPUs
has attracted a lot of attention from the High Performance
Computing community. It is becoming common for large
scale clusters to have GPUs on only a subset of nodes in
order to limit system costs. The major challenge for HPL
in this case is to efficiently take advantage of all the CPU
and GPU resources available on a cluster. In this paper, we
present a novel two-level workload partitioning approach for
HPL that distributes workload based on the compute power
of CPU/GPU nodes across the cluster. Our approach also
handles multi-GPU configurations. Unlike earlier approaches
for heterogeneous clusters with CPU and GPU nodes, our
design takes advantage of asynchronous kernel launches and
CUDA copies to overlap computation and CPU-GPU data
movement. It uses techniques such as process grid reordering
to reduce MPI communication/contention while ensuring load
balance across nodes. Our experimental results using 32 GPU
and 128 CPU nodes of Oakley, a research cluster at Ohio
Supercomputer Center, shows that our proposed approach can
achieve more than 80% of combined actual peak performance
of CPU and GPU nodes. This provides 47% and 63% increase
in the HPL performance that can be reported using only CPU
nodes and only GPU nodes, respectively.
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I. INTRODUCTION

It is becoming increasingly common for High Perfor-
mance Computing clusters to use accelerators such as
NVIDIA GPUs to push their peak compute capabilities.
This trend is evident in the most recent (November 2012)
TOP500 list [1] where 62 systems make use of accelerator
technology. With GPUs being expensive and specialized
compute resources, it is also common for large scale clusters
to have GPUs on only a subset of their nodes, to limit system
costs. The Blue Waters supercomputer with Cray XE6 (CPU
nodes) and Cray XK7 (GPU nodes) is an example. Systems
with such configurations have two levels of heterogeneity:
intra-node heterogeneity (between CPU and GPU within
a node) and inter-node heterogeneity (between nodes with
GPUs and nodes without GPUs).
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The High Performance Linpack (HPL) benchmark has
been the yardstick to measure the performance of high-
end supercomputing systems [2]. Optimizing performance
of HPL on heterogeneous clusters with GPUs has attracted
a lot of attention from the research community. Most of the
research carried out has focused on optimizing the compute
kernels on the GPUs and on addressing the intra-node
heterogeneity between CPU and GPU. The version of HPL
available from NVIDIA is an example of such an effort [3].
However, there is no public version of HPL available that
can handle inter-node heterogeneity with CPU and GPU
nodes. Hence, several clusters with heterogeneous CPU and
GPU nodes report their HPL performance using either a pure
CPU node configuration or a pure GPU node configuration;
whichever yields the better performance. The Oakley cluster
at the Ohio Supercomputer Center is an example of this.
Motivation: To demonstrate the true potential of a compute

cluster, the HPL benchmark should be able to efficiently
take advantage of all CPU and GPU resources that are
available. The work distribution has to be balanced based
on the compute power of each CPU and GPU node in
order to achieve maximum performance. The latest version
of NVIDIA GPUs and CUDA libraries provide features
such as asynchronous kernel execution and DMA-based
CUDA memory copies that provide efficient overlap between
computation and data movement. An efficient design in HPL
should take advantage of these features to boost HPL peak
performance. The design should also consider other factors
such as optimal MPI process placement and process to grid
mapping in order to minimize communication overhead and
load imbalance.

Earlier work on HPL for GPU clusters has not addressed
many of these challenges. The version of HPL from NVIDIA
provides efficient work distribution between CPU and GPU
within a node, and takes advantage of the asynchronous
CUDA features [3]. But, it does not address inter-node
heterogeneity and does not address issues such as process to
grid mapping. We refer to this version as NVIDIA’s version
of HPL in the rest of the paper. Work by Endo et. al.
discusses a technique for inter-node heterogeneity but does
not take advantage of asynchronous operations offered by
CUDA for efficient overlap between computation and data
movement. They reserve a CPU core per process to progress
communication, thus leading to wasted CPU resources [4].



Contributions: We propose a novel approach to run the
HPL benchmark on heterogeneous CPU-GPU clusters. We
present a two-level workload partitioning scheme that effi-
ciently balances the workload across CPU and GPU nodes.
Our approach also takes into consideration node configu-
rations with multiple GPUs. We base our design on the
version of HPL from NVIDIA [3], thus taking advantage of
asynchronous CUDA operations to overlap computation and
data movement. We propose a novel process grid rordering
approach to minimize communication and load imbalance.
Experiments using 32 GPU and 128 CPU nodes of Oakley
Cluster show that our proposed designs can achieve more
than 80% of the combined actual peak performance of CPU
and GPU nodes. This provides up to 47% and 63% increase
in the HPL performance compared to that using pure CPU
node and pure GPU node configurations, respectively. We
show the flexiblity and scalability of our approach by using
different heterogeneous node configurations. In this paper,
we make the following key contributions:

1) Propose a novel two-level workload partitioning ap-
proach that enables the HPL benchmark to take ad-
vantage of CPU and GPU nodes on a heterogeneous
cluster.

2) Introduce a process grid reordering technique in our
hybrid HPL to reduce communication overheads and
improve load balancing.

3) Present detailed analysis of performance, efficiency,
and scalability of our hybrid HPL design across dif-
ferent clusters with diverse configurations.

The rest of the paper is organized as follows. In Section II,
we provide required background and present related work.
We then discuss our proposed designs for a hybrid HPL
on heterogeneous clusters in Section III. In Section IV,
we present experimental results and detailed analysis. We
conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK ON HPL
The Linpack Benchmark [2] is widely used to measure

the peak performance of supercomputer systems. The bench-
mark solves a dense system of linear equations, Ax = b, by
applying LU factorization with partial pivoting followed by
backward substitution. The overall workload of the bench-
mark can be estimated as: (2/3)N3 + 2N2 + O(N). The
LU factorization [5] [6] contributes to most of the execution
time. Two kernels, DTRSM and DGEMM, dominate the
time spent in LU factorization.

High Performance Linpack (HPL) has attracted a lot of
attention from researchers over the years. LINPACK, pro-
vided by Netlib at UTK [2], has formed the basis for several
optimized versions of the benchmark. Several researchers
have also presented designs of HPL for GPU clusters. Fatica
et. al. [3] implemented the first version of CUDA-based HPL
for clusters with NVIDIA GPUs. The author proposed a host
library that intercepts the calls to DGEMM and DTRSM

and executes two operations simultaneously on both GPU
accelerators and CPU multi-core hosts. Further, they utilize
asynchronous memory copy and kernel launch operations
to overlap computation and data movement. M. Bach et.
al. [7] presented an optimized HPL version targeted at AMD
GPU clusters. However, these versions handle only intra-
node heterogeneity. T. Endo et. al. [4] utilizes an approach
of launching a varying number of MPI processes on CPU
and GPU nodes to handle inter-node heterogeneity. However,
their work only parallelizes the DGEMM kernel on the
GPU and reserves one CPU core for each MPI process
to progress communication. The approach presented in this
paper overcomes the limitations of the above approaches and
handles inter-node heterogeneity on clusters with CPU and
GPU nodes while utilizing all CPU and GPU resources for
computation.

There has also been extensive research focusing on
scheduling strategies for the HPL benchmark [8–14]. Using
frameworks like StarPU [12] and OmpSs [10], which sup-
port asynchronous parallelism and heterogeneity, researchers
have compared static and dynamic scheduling of HPL tasks.
In this paper, we resort to static workload partitioning at the
inter-node level and adopt dynamic workload partitioning at
the intra-node level.

III. PROPOSED FRAMEWORK FOR A HYBRID HPL

In this section, we first give an overview of the framework
for our hybrid HPL benchmark. We then discuss the two-
level hybrid workload partitioning that includes inter-node
static and intra-node dynamic partitioning strategies. Finally,
we describe the process grid reordering technique.

A. Proposed design for Hybrid HPL

Heterogeneity Analysis	

Process Grid Reordering	

Hybrid Launcher	

MPI-Device  
Mapping (m: n)	

Dynamic Intra-node 
Workload Partitioning	

Call MKL + cuBLAS	

Call MKL	

GPU  Nodes	 CPU Nodes	

Pre-run Analysis	 Runtime Execution	

Static Inter-node 
Workload Partitioning 

Figure 1. Overview of the Hybrid HPL Design

Our framework consists of two major parts: Pre-run
Analysis and Runtime Execution. The first step in pre-
run analysis is to identify the heterogeneity of a cluster.
We detect three scenarios: “pure CPU nodes,” “pure GPU
nodes,” and “heterogeneous CPU nodes + GPU nodes.” Note
that we use “CPU nodes” to refer to compute nodes with
only multi-core host processors and we use “GPU nodes”
to refer to nodes with multi-core host processors and GPU
accelerators.
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The second step in the framework is to distribute data
across nodes, taking the heterogeneity into consideration.
In the case of a pure GPU node configuration, our design
follows the model used in NVIDIA’s HPL implementa-
tion [3]. We launch one MPI process per GPU and we use
the “MPI+OpenMP” model to utilize all of the CPU cores.
In the case of pure CPU nodes, our design uses the hybrid
“MPI+OpenMP” model to flexibly select the number of MPI
processes per node and the number of OpenMP threads per
process to achieve maximum performance. In both cases,
each node gets equal portion of the workload. To maximize
utilization in a heterogeneous configuration, it is required
that the workload distribution is proportional to the compute
power of CPU and GPU nodes. We achieve this using a
static MPI process-scaling based workload distribution. We
explain this in detail in Section III-B. Then, our framework
applies compute capacity-aware process grid reordering to
generate an efficient node topology. This completes the
pre-run analysis and the MPI launcher spawns processes
on GPU nodes and CPU nodes accordingly. The runtime
execution part of the framework decides the MPI process to
GPU Device mapping and intranode CPU-GPU workload
distribution on each of the “GPU nodes.” The intranode
CPU-GPU workload distribution is handled in a dynamic
manner as is explained in later sections.

B. Two-Level Hybrid Workload Partitioning

The two-level workload partitioning consists of: static
inter-node distribution during the pre-run analysis and dy-
namic intra-node work distribution during the runtime pro-
cessing.

1) Inter-node Static Workload Partitioning: Figure 2(a)
shows the standard cyclic distribution used in HPL with a
2×2 process grid and a configuration of 2 GPU and 2 CPU
nodes. It shows the case when there is one process launched
per node. Since work is distributed uniformly across all
nodes, the overall performance is bound by that of the lower
compute-capacity CPU nodes.

One way to handle this shortcoming is to proportion-
ally distribute the workload between processes running on
CPU nodes and processes running on GPU nodes based
on the ratio of their computation capacities. This involves
hybrid block-sizes as depicted in Figure 2(b). However, this
approach is not very applicable for the HPL benchmark.
All panel factorization happens across the diagonal of the
matrix. With this approach, firstly, it is difficult to control
computation and communication order with an asymmetric
workload partitioning. Secondly, the computation of irreg-
ular sub-blocks in the update stage will incur too much
overhead.

MPI Process-scaling Based Workload Partitioning: To
avoid the overheads and complexities of hybrid block-size
based partitioning, we use an MPI process-scaling based
approach as shown in Figure 2(c)). Rather than partitioning

(a) Original Partitioning (c) MPI Process-scaling Based  
Partitioning 

G1 G2 C1 C2 

(b) Hybrid-blocksize Based 
Partitioning 

Figure 2. Strategies of Inter-node Workload Partitioning

the matrix into various sizes, this strategy conforms to the
original strategy with the identical block size. To increase
the workload ratio between GPU nodes and CPU nodes, this
strategy schedules more MPI processes on GPU nodes to
exploit their compute power while each MPI process (either
CPU or GPU) get equal workload. First, based on general
MPI binding, this strategy allows launching various number
of MPI processes on CPU and GPU nodes. This flexibility
is crucial to the portability of our partitioning strategy. With
different cluster configurations, this strategy can adaptively
adjust the number of MPI processes on CPU and GPU nodes.

The dashed rectangles in Figure 2 denote the process
grid. Both original and hybrid block-size strategies use
2 × 2 grids even though hybrid block-size based approach
adopts variable sized sub-blocks. The MPI process-scaling
based strategy extends the grid to 2 × 3 by launching two
MPI processes on each GPU node. Launching more MPI
processes on GPUs will help boost the performance, but
launching too many processes on a node is undesirable. With
prior knowledge of actual peak performances of a single
GPU node and a single CPU node, the number of MPI
processes per GPU node (MPI G) can be calculated as:
Ratio = Actual GPU Peak/Actual CPU Peak (1)

MPI G = Ratio+ δ (2)
where δ ∈ Z that makes Num CPU Cores mod

MPI G = 0.
In order to equally split the CPU cores across all MPI

processes on each GPU node, our design tunes the value
of δ and binds each MPI process on a GPU node with
one GPU device and k CPU cores on host, where k =
Num CPU Cores/MPI G. Assuming Ratio equals 5
and CPU host has 12 cores, the framework will adjust δ to “-
1” and pessimistically launch 4 MPI processes on each GPU
node accordingly. If we simply launch 5 MPI processes in
this case, it will waste two cores in computation. Or in order
to fully utilize all CPU cores, we may need to make two out
of five processes have one more core. This case will cause
computation imbalance. As shown in Section IV-B4, our
design can adaptively adjust the number of MPI processes
on each GPU node.

2) Intra-node Dynamic Workload Partitioning: The intra-
node partitioning happens on GPU nodes only. Each MPI
process splits the workload and offloads a larger portion of
compute to GPU devices while leaving a smaller portion for
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the CPU. NVIDIA’s original design supports 1:1 mapping
between MPI processes and GPU devices. In contrast, our
design maps multiple MPI processes onto one GPU Node
to ensure load balancing between CPU nodes and GPU
nodes. This requires us to re-evaluate the ratio of intra-node
workload partitioning between CPU and GPU. First, splitting
the CPU cores across all of the MPI processes on each
GPU node will reduce the CPU compute capacity associated
with each MPI process. Further, the overhead resulting from
sharing the GPU device by multiple MPI processes cannot
be ignored. We have to increase the ratio to offset the first
factor yet decrease the ratio to counteract the second one. We
empirically adjust the initial CPU-GPU split to offset these
overheads. NVIDIA’s HPL version dynamically adjusts the
CPU-GPU split as the execution progresses until it reaches
the optimal balance. Our adjustments enable HPL to reach
this equilibrium faster and thus allow for better performance.

C. Process Grid Reordering

Given the fixed number of MPI processes, there are
different permutations of the two dimensional process grid.
The optimal process grid on different clusters depends on
the architecture of the physical interconnect. Based on the
interconnect of our experiment platforms, an HPL bench-
mark test using T MPI processes and with a P ×Q process
grid will achieve peak performance if [15]:{
P ×Q = T, where P ≤ Q and P,Q ∈ N
6 ∃P ′, Q′ ∈ N, that P ′ ×Q′ = T and P < P ′ ≤ Q′ < Q

(3)

G0 G1 G2 G3 

(a) Default Grid 

0 1 

2 3 4 5 6 7 2 3 

0 1 

2 3 4 5 6 7 2 3 

0 1 

2 3 

4 5 

6 7 

0 1 

2 3 

4 5 

6 7 

(b) Optimized Grid 

C0~7 

Figure 3. Workload Partitioning with Process Grid Reordering

Figure 3(a) illustrates an example of the default grid. We
consider a 4× 6 process grid for a 12-node configuration (4
GPU nodes and 8 CPU nodes), in which we launch 4 MPI
processes on each GPU node and 1 MPI process on each
CPU node. The default process grid does not provide optimal
performance because of the inconsistent broadcast pattern
across grid rows, and disproportional load balancing across
GPU and CPU nodes. To solve these problems, this paper
proposes a new process grid reordering method. Algorithm 1
shows how to generate an optimal grid with a given sets
of parameters. First, we read the GPU and CPU hostfiles
and calculate the total number of MPI processes. Then, we
factorize this number and choose the initial P × Q grid.
Based on the relationship between the number of GPU nodes
and initial value of P, we either adjust the process grid or
the placenment of MPI processes for each GPU node. Then,

GPU nodes are given higher priority and we place MPI
processes on GPU nodes in top-down manner. Finally, CPU
nodes are filled in the remaining slots.

In contrast to the default grid, the optimized grid exhibits
better load balancing between GPU nodes and CPU nodes.
In addition, panel broadcasts across MPI processes within
one GPU node take advantage of the shared memory. Fur-
ther, our method can be easily extended to support different
cluster configurations. For instance, let’s assume that a
cluster has three types of nodes: GPU nodes with 2 GPU
devices (2G-Nodes), GPU nodes with 1 GPU device (1G-
Nodes), and pure CPU nodes. The inter-node partitioning
strategy launches 6, 4, and 1 MPI processes on each of
the three types of nodes, respectively. Then, the reordering
method follows the “capacity-Priority” criterion to first place
2G-Nodes in the grid, followed by 1G-Nodes, and pure CPU
nodes in order.

Algorithm 1: PROCESS GRID REORDERING

Input: g hosts, c hosts, mpi g, threshold α = 0.5
Output: Reordered Process Grid

1 g(c) num← Calc GPU/CPU numbers by g(c) hosts
t mpi← g num ∗mpi g + c num

2 P,Q← Choose initial P,Q based on Formula 3;
3 if g num ∗mpi g < P then

goto label rest;
end
if g num ∗mpi g ∗ α < P then

Choose another pair of P ′ and Q′ satisfying:
no M exists that P ′ < M <= g num < P
in which M ∗N = P ′ ∗Q′ = t mpi

end
if g num < P < g num ∗mpi g ∗ α then

while i ∈ [2,mpi g] and g num < P do
mpi g ← mpi g/i;
g num← g num ∗ i;

end
end

4 gpu per row = g num/P ;
for row ∈ [0, P ) do

Place mpi g ∗ gpu per row GPU MPI processes;
end
label rest: rg iter ← g num%P ;
for row ∈ [0, rg iters) do

Place mpi g GPU MPI processes;
end

5 Place CPU MPI processes top-down in remaining slots

IV. PERFORMANCE EVALUATION

In this section, we present experimental evaluation of our
hybrid HPL benchmark and an analysis of the results.

A. Experimental Setup

We have used two different clusters in our experiments.
Their specifications are in Table I. To demonstrate the
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flexibility and portability of our design, we have conducted
experiments using two different configurations on the Oakley
cluster: “1G-Config”, where each GPU node has one GPU
accelerator, and “2G-Config”, where each GPU node has
two GPU accelerators. Cluster A only has the “1G-Config”
configuration.

Specifications Cluster A Oakley Cluster
CPU Processor Type Intel Xeon E5630 Intel Xeon X5650
CPU Clock 2.53GHz 2.66GHz
Node Type two quad-core sockets two 6-core sockets
CPU Memory 11.6 GB 46 GB
CPU Theo.peak (double) 80.96 Gflops 127.68 Gflops
GPU Processor Type NVIDIA Tesla C2050 NVIDIA Tesla M2070
GPU Theo.peak (double) 515 Gflops/GPU 515 Gflops/GPU
BLAS Lib MKL 10.3/cuBLAS MKL 10.3/cuBLAS
Compilers Intel Compilers 11.1 Intel Compiler 11.1
MPI Lib MVAPICH2 1.9 MVAPICH2 1.9
OS RHEL 6.1 RHEL 6.3
Interconnect Mellanox IB QDR Mellanox IB QDR

Table I
EXPERIMENTAL ENVIRONMENT

B. Analysis of Design Enhancements

In this part, we evaluate the performance impact of differ-
ent aspects of our design. Figures 4 and 5 show the results
with “1G-Config” on cluster A and “2G-Config” on Oakley,
respectively. We used three different node combinations (4
GPU nodes with 4, 8, or 16 CPU nodes) on both clusters. We
launch 4 and 6 MPI processes per GPU node on cluster A
and Oakley, respectively. The performance impact of various
aspects of our design is compared with that of the earlier
design proposed by Endo et. al. [4]. In the graphs, we
refer to our design as ”OSU-HYBRID” and we refer to the
simulation of design by Endo et. al. as “SIMU-ENDO.”

1) Parallel DTRSM: The hybrid HPL design proposed
by Endo et. al executes the DGEMM kernel on the GPU
while using only the CPUs to execute DTRSM [4]. Based on
NVIDIA’s design, our implementation parallelizes DTRSM
using both CPU and GPU. As shown in Figure 4(a) and
Figure 5(a), DTRSM parallelization provides around 2-3%
and 3-5% increase in overall HPL performance on Cluster
A and Oakley, respectively. The benefits from parallelizing
DTRSM are bounded by the percentage of HPL runtime
spent in DTRSM and the overhead of creating and managing
CUDA streams and events.

2) CPU Resource Usage: Each MPI process on a GPU
node is assigned a subset of CPU cores and one shared GPU
accelerator. Earlier design by Endo et. al. dedicates one CPU
core per MPI process to process data movement between
CPU and GPU. With the help of asynchronous memory copy
and kernel launches, our design takes advantage of all of
the CPU cores available for an MPI process. In Figures 4(b)
and 5(b) we show the impact of fully utilizing CPU resources
on the overall performance compared to a case when one
core per MPI process is dedicated for data movement. Here,
we achieve 8-10% and 13-15% improvement in performance

with full utilization of CPU resources, compared to that
using “SIMU-ENDO.”

3) Process Grid Reordering: We demonstrate the impact
of process grid reordering using a 4× 6 process grid on the
node configuration with 4 GPU nodes and 8 CPU nodes,
using a problem size N = 81, 920 and NB = 512. A portion
of the grid with default and reordered mapping of processes
is shown in Figure 3. Table II presents the workload dis-
tribution among processes with the default and optimized
process ordering. Clearly, optimized process grid provides
better load balancing, giving equal work to all processes
running on CPU nodes and equal work to all processes
running on the GPU nodes. In addition, Table III shows the
decomposed time for panel factorization (rfact), broadcast
(bcast), and sub-matrix update (update). We see that the
optimized grid improves the execution time of all three parts
due to improved computation and communication.

Process Grid Number of Blocks
g0,3 g1,2 c0,1,6,7 c2,3,4,5 Total

Default 4320 4240 1040 1080 25600
Optimized 4320 1040 25600

Table II
SUB-BLOCK WORK DISTRIBUTION BETWEEN PROCESSES ON CPU AND

GPU NODES (N = 81,920, NB = 512)

Process Grid Total Max rfact Max bcast Max update
Default 267.6 17.5 82.8 229.3
Optimized 245.6 12.4 72.1 222.8

Table III
DECOMPOSED TIMING OF ALL PARTS

4) MPI Processes Scaling: Here, we present the perfor-
mance results with varying number of MPI processes per
GPU node on both Cluster A and Oakley. The goal is to
achieve the best load balancing possible between the CPU
and GPU nodes, as described in Section III. We focus on the
performance of the update phase that dominates the overall
execution time.

As shown in Figure 6, DTRSM takes a small portion of
the overall runtime and it increases consistently with more
number of MPI processes per GPU node. We attribute this
fact to the context switching costs and scheduling overheads
on GPU device. However, with DGEMM, where the kernel
execution dominates the overall time, we see that increasing
the number of processes on GPU nodes improves the load
balancing between CPU and GPU nodes, thus improving
performance. From Figure 6, we see that the best balance
is achieved by launching 4 MPI processes per GPU node
on Cluster A and on Oakley with “1G-Config,” even though
these clusters have different CPU specifications. Also, the
best balance is achieved by launching 6 MPI processes on
Oakley with “2G-Config.” We use these configurations in
the rest of our experiments.

C. Evaluation of Peak Performance

In Figure 7, we present a comparison of peak performance
achieved using different versions of HPL on “16 GPU
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Figure 4. Performance Evaluation on Cluster A with 4 GPU nodes and varying number of CPU nodes
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Figure 5. Performance Evaluation on Oakley Cluster with 4 GPU nodes and varying number of CPU nodes
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(b) Oakley Cluster (1G Config)
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Figure 6. Update Time Decomposition Analysis with 4 GPU nodes and 16 CPU nodes

nodes + 64 CPU nodes” of the Oakley cluster. “Netlib-
MPI-CPU” refers to the standard version of HPL from
UTK that was used for reporting Top500 HPL performance
of a pure CPU configuration of 64 CPUs on Oakley.
“MPI+OpenMP-CPU” is NVIDIA’s version of HPL which
is run on the same pure CPU configuration. “MPI+OpenMP-
GPU” is NVIDIA’s version run on pure GPU configuration
of 16 GPUs. NVIDIA’s version of HPL requires the number
of MPI processes per node to be equal to the number
of GPUs per node. It uses OpenMP threads to utilize
all the CPU cores. “SIMU-ENDO” and “OSU-HYBRID”
are as described in Section IV-A. From Figure 7(a), we
see that “OSU-HYBRID” can deliver better performance
compared to the ”SIMU-ENDO” in both “1G-Config” and
“2G-Config” configurations. Figure 7(b) shows the percent-

age of combined real peak of pure CPU and pure GPU
configurations achieved by the hybrid versions of HPL. We
see that “OSU-HYBRID” achieves more than 80% of the
peak in both “1G-Config” and “2G-Config” configurations.
The loss in performance compared to the peak is primarily
due to the imbalance in memory and compute power on
Oakley nodes. We take advantage of the higher compute
power of GPU nodes by scheduling more MPI processes
on them while scheduling only one MPI process per CPU
node. Since both CPU and GPU nodes on Oakley have the
same amount of memory and data distribution among MPI
processes is uniform, the processes running on the CPU node
cannot take advantage of all the memory available. This
limits the peak performance achieved on the CPU nodes,
when running in the hybrid manner. On clusters which have
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memory resources proportionate to the compute power of
GPU nodes, this performance loss can be avoided using our
design.

Table IV reports the peak performance numbers using
our hybrid HPL on Cluster A and Oakley. We define peak
performance efficiency (PPE) and theoretical performance
efficiency (TPE) as follows: PPE is the hybrid perfor-
mance (Rpeak−h) as a percentage of combined real peak
achieved using pure CPU node (Rpeak−c) and pure GPU
node (Rpeak−g) configurations while TPE is the hybrid
performance as a percentage of combined theoretical peak
of pure CPU node and GPU nodes configurations.

PPE = H Peak/(CPU Peak +GPU Peak) (4)

TPE = H Peak/(CPU t Peak +GPU t Peak) (5)

We see that our hybrid version can achieve up to 86.3%
PPE for the largest run on Oakley. It achieves over 50%
TPE. Our version delivers up to 47% improvement in the
performance compared to that reported using a pure CPU
configuration (160 CPU nodes). Note that when computing
the PPE, the compute power of multi-core processors of the
GPU nodes has to be deducted to factor out the overlap.

Config Rpeak−c Rpeak−g Rpeak−h PPE(%) TPE (%)
1G-Config-A 2479 2911 3888 80.7% 52.8%
1G-Config-Oakley 18428 11722 22040 83.2% 59.7%
2G-Config-Oakley 18428 16670 27110 86.3% 50.8%

Table IV
PEAK PERFORMANCE ACHIEVED USING OUR HYBRID HPL ON CLUSTER
A(8G+32C) AND OAKLEY(32G+128C). PERFORMANCE IS IN GFLOPS

D. Performance Scalability

In Figure 8, we show the strong and weak scaling of our
hybrid HPL on Cluster A. For strong scaling, we fix the
HPL problem size to 80,000 and 110,000 for 4 and 8 GPUs,
respectively, while varying the number of CPU nodes used.
In the experiments for weak scalability, we keep the memory
usage of GPUs around 80%. We keep the number of GPU
nodes constant at 4 and 8 while we increase the number of
CPU nodes. This is to show the scalability while our code
takes advantage of abundant CPU resources available on a
cluster. Clearly, both curves achieve sustained scalability.

Figure 9 shows the scalability of PPE achieved by
our code with different heterogeneous node configurations
on Oakley. PPE is calculated as mentioned above. In
Figure 9(a), we keep the number of CPU nodes constant
while we increase the number of GPU nodes. In Figure 9(b),
we keep the number of GPU nodes constant while we
increase the number of CPU nodes. In Figure 9(c), we scale
the number of CPU and GPU nodes proportionally. We see
constant PPE as we vary the GPU nodes only or when
we vary CPU and GPU nodes proportionately. We see a
drop when the number of CPU nodes are increased while
keeping number of GPU nodes constant. This is due the

loss of efficiency on CPU nodes due to memory-compute
imbalance as explained in Section IV-C. We still get above
80% efficiency for both configurations.

V. CONCLUSION AND FUTURE WORK

This paper proposes a novel approach to enable the HPL
benchmark to efficiently utilize all computing resources on
heterogeneous CPU-GPU clusters. With a two-level work-
load partitioning strategy and process grid reordering, our
design achieves above 80% of the combined real peak per-
formance of pure CPU and pure GPU node configurations.
The test results exhibit sustained scalability, and experiments
across two platforms with three configurations validate the
portability of our approach. In future work, we will explore
our design on heterogeneous clusters with Intel MIC.
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Figure 7. Comparison of peak performance and efficiency across different HPL versions on 16 GPU nodes and 64 CPU nodes
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Figure 8. Strong Scalability and Weak Scalability on Cluster A with 2 and 4 MPI processes launched on each GPU node
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Figure 9. Performance Efficiency Scalability on Oakley

[10] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Mar-
torell, R. M. Badia, E. Ayguade, and J. Labarta,
“Productive Cluster Programming with OmpSs,” in
Proceedings of the 17th international conference on
Parallel processing (Euro-Par), 2011.

[11] T. R. W. Scogland, B. Rountree, W.-C. Feng, and
B. R. de Supinski, “Heterogeneous Task Scheduling
for Accelerated OpenMP,” in Proceedings of the IEEE
26th International Parallel and Distributed Processing
Symposium (IPDPS), 2012.

[12] C. Augonnet, O. Aumage, N. Furmento, R. Namyst,
and S. Thibault, “StarPU-MPI: Task Programming over
Clusters of Machines Enhanced with Accelerators,”

in Proceedings of the 19th European conference on
Recent Advances in the Message Passing Interface
(EuroMPI), 2012.

[13] F. Song, S. Tomov, and J. Dongarra, “Enabling and
Scaling Matrix Computations on Heterogeneous Multi-
core and Multi-GPU Systems,” in Proceedings of the
26th ACM international conference on Supercomputing
(ICS), 2012.

[14] F. Song and J. Dongarra, “A Scalable Framework for
Heterogeneous GPU-based Clusters,” in Proceedings of
the 24th ACM symposium on Parallelism in algorithms
and architectures (SPAA), 2012.

[15] Netlib FAQ, http://www.netlib.org/benchmark/hpl/faqs.html.

8


