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Abstract—Increasing number of MPI applications are being
ported to take advantage of the compute power offered by
GPUs. Data movement on GPU clusters continues to be the
major bottleneck that keeps scientific applications from fully
harnessing the potential of GPUs. Earlier, GPU-GPU inter-node
communication has to move data from GPU memory to host
memory before sending it over the network. MPI libraries like
MVAPICH2 have provided solutions to alleviate this bottleneck
using host-based pipelining techniques. Besides that, the newly
introduced GPUDirect RDMA (GDR) is a promising solution to
further solve this data movement bottleneck. However, existing
design in MPI libraries applies the rendezvous protocol for all
message sizes, which incurs considerable overhead for small
message communications due to extra synchronization message
exchange.

In this paper, we propose new techniques to optimize inter-
node GPU-to-GPU communications for small message sizes.
Our designs to support the eager protocol include efficient
support at both sender and receiver sides. Furthermore, we
propose a new data path to provide fast copies between
host and GPUs memories. To the best of our knowledge,
this is the first study to propose efficient designs for GPU
communication for small message sizes, using eager protocol.
Our experimental results demonstrate up to 45% and 63%
reduction in latency for GPU-to-GPU and CPU-to-GPU point-
to-piont communications, respectively. These designs boost the
uni-directional bandwidth by 7.3x and 1.7x, respectively. We
also evaluate our proposed design with two end-applications:
GPULBM and HOOMD-blue. Performance numbers on Kepler
GPUs shows that, compared to the best existing GDR design,
our proposed designs achieve up to 23.4% latency reduction for
GPULBM and 20.1% increase in average TPS for HOOMD-
blue, respectively.
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I. INTRODUCTION

It is becoming increasingly common for High Perfor-
mance Computing clusters to use accelerators, such as
GPUs, to push their peak compute capabilities. This trend
is evident in the TOP500 list released in November 2013,
where 53 systems make use of accelerator technology [1].
NVIDIA has been the leader in GPU technology and its
latest generation of GPU architecture, Kepler, provides in-
novative features (e.g. GPUDirect RDMA) that make GPUs
applicable to a wider range of scientific applications [2].
An increasing number of scientific applications are also
being ported to take advantage of such clusters [3, 4]. Lots
of scientific applications use CUDA, the primary parallel

programming model for NVIDIA GPUs, in conjunction with
high-level programming models like MPI. Usually, CUDA is
responsible for the kernel computation and data movement
between local CPU host and GPU device. And high-level
programming models like MPI are responsible for inter-
process communications. Several designs have been pro-
posed to reduce the overhead of data movement by enabling
MPI for communication directly from GPU device mem-
ory [5]. In addition, MPI libraries have taken advantage of
advanced CUDA features like CUDA IPC and optimizations
like pipelining to improve GPU-to-GPU communication,
which are transparent to the application users [6].

GPUDirect is a set of features offered by CUDA to enable
efficient data movement among GPUs and between GPUs
and other PCI Express (PCIe) devices [7]. Since CUDA
5.0, the initial GPUDirect in CUDA 4.1 was extended with
GPUDirect RDMA (GDR) feature, which allows network
adapters to directly read from or write to GPU device
memory while completely bypassing the host. GDR avoids
the additional hop in original design where the data has to
be copied to the host before sending it out to other nodes.

1) Motivation: MPI libraries like MVAPICH2 [8] and
Open MPI [9] have incorporated GDR techniques into
CUDA-Aware MPI communications. By taking advantage
of the performance potential offered by GDR while tackling
the limitations observed on the current generation systems,
MVAPICH2 achieves faster path for moving data between
GPU memory to a remote GPU or a remote host [10].

Nevertheless, there are some limitations in the exist-
ing GDR-based communication design. Current GPU-to-
GPU communication relies on rendezvous protocol for all
message sizes. However, the CTS/RTS header exchange
incurs additional overhead for small message transfers in
handshake stage and an explicit synchronization between the
sender and the receiver will limit the overlap between com-
munication and computation. Furthermore, the bandwidth
limitation brings inefficient use of the GDR feature when
the network adapter and the GPU are on different sockets.

Existing eager Protocol does not take advantage of the
GDR and uses host-based copies. Furthermore, it needs
additional copies using the temporary buffers. To avoid these
limitations, rendezvous protocol is proposed and used by
current MVAPICH2 for all message sizes. Obviously, all



above limitation have to be considered while designing MPI
libraries to effectively take advantage of GDR for GPU-to-
GPU communication.

In this paper, we discuss the existing GDR design in
MVAPICH2 library. Also, we propose novel techniques that
efficiently take advantage of the performance potential of-
fered by GDR and InfiniBand Verbs. We make the following
key contributions through this paper:

1) Propose an sglist-based (scatter-gather list) method to
optimize the eager protocol that combines the transfer
of meta-data (header) and message data in one IB Verb
operation.

2) Propose a loopback design to optimize the eager
protocol that takes advantage of the GDR features.

3) Propose a new Fastcopy technique to replace the
existing CUDA Memcpy APIs for Host to Device
transfers.

4) Present a quantitative evaluation of the proposed de-
signs across clusters with diverse GPU configurations
using micro benchmarks and end-applications

The rest of the paper is organized as follows. In Sec-
tion II, we describe the background related to our work. In
Section III, we discuss the current design and present the
proposed design in details. We present experimental results
in Section V. Finally, we summarize the related work in
Section VI and conclude the paper in Section VII.

II. BACKGROUND

In this section, we describe the background for this paper.
We introduce the GPU architecture and CUDA programming
models. Then we describe the GPUDirect RDMA technol-
ogy and InfiniBand architecture. In addition, we summarize
the existing support for GPU-to-GPU communication in
MVAPICH2 library.

A. GPU and CUDA Programming Model
GPU is a peripheral device that is connected to the

host through the high speed IO slot. (e.g. PCIe) In this
paper, we focus on the NVIDIA GPU architecture. The
latest architectural revision of NVIDIA GPUs for High
Performance Computation (HPC) is named Kepler. A Kepler
GK110 packs around 7.1 billion transistors, delivering over
1 TFLOP of double precision throughput and up to 3x
the performance per watt of a Fermi. It includes up to
15 Streaming Multiprocessor (SMX) units and 6 64-bit
memory controllers. Each of the SMX units features 192
single precision cores, 64 double precision units, 32 special
function units (SFU), and 32 load/store units. Each SMX
has 64KB of configurable shared memory/L1 cache and a
48KB of read-only data cache. Tesla K20C features 1536KB
of dedicated L2 cache and 5GB of DRAM. The SMX allows
four warps to be issued and executed concurrently where a
warp is a group of 32 threads. Keplers quad warp scheduler
can dispatch two independent instructions per warp in each

cycle. Unlike Fermi, Kepler also allows double precision
instructions to be paired with other instructions. Kepler also
boasts features like Dynamic Parallelism and HyperQ that
are aimed at increasing the utilization of GPUs. NVIDIA
provides a software framework called the Compute Unified
Device Architecture (CUDA) [1] for programming its GPUs.
Code that runs on the GPU is often called a CUDA kernel.
GPUs are connected as peripheral devices on the I/O bus
(PCI express). Communication between GPU and host as
well as among GPUs used to be a performance bottleneck as
it involved multiple costly transfers over the PCIe bus. Since
CUDA 4.0, NVIDIA introduced two new technologies: Uni-
fied Virtual Addressing (UVA) and GPUDirect Peer-to-Peer
(P2P) communication among GPUs. UVA enables a process
to have a unified address space across main (host) memory
and device memories of GPUs connected on a single node.
Thanks to P2P, data can be moved directly from one GPU
to another, thereby bypassing temporary staging in host
memory. However, communication between GPU buffers
used by different processes is still needed to go through main
memory. NVIDIA addressed this shortcoming in CUDA 4.1
by supporting Peer-to-Peer communication among processes
through CUDA Inter-Process Communication (IPC) technol-
ogy. IPC makes it possible for a process to directly access
device memories belonging to other processes, either on the
same or different GPUs, sitting on the same host, without
involving main memory.

B. GPUDirect RDMA

NVIDIA’s GPUDirect technology provides a set of fea-
tures that enable efficient communication among GPUs and
between GPUs and other devices. The initial version of
GPUDirect, released in CUDA 4.0, enabled the same host
memory regions to be registered by both a network adapter
and a GPU device. Registration is necessary for HW DMA
engines to directly access memory regions and GPUDirect
technology essentially allowed the DMA engines of these
two PCIe devices, the GPU and the IB network host adapter,
to transfer data into and out of the same host region. Host
memory is registered with the GPUs DMA to enable faster
asynchronous copies between GPU device and CPU host.
Communication over IB also requires registration of the
host buffers involved in the transfer. The above feature of
GPUDirect avoided an additional copy in host memory when
data copied from the GPU has to be transferred over the
InfiniBand network. MPI libraries like MVAPICH2 already
take advantage of this feature.

In the most recent release of CUDA, GPUDirect has
been extended to allow third party PCIe devices to directly
read/write data from/to GPU device memory. This is called
GPUDirect RDMA (GDR). The existing work utilizes this
upgraded version of GPUDirect to enhance inter-node MPI
communication from GPU memory.
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C. InfiniBand
InfiniBand [11] is a very popular interconnect that is used

by 41% of the Top500 supercomputers [1]. One important
feature of InfiniBand is the support for remote direct mem-
ory access (RDMA). RDMA enables directly reading from
and writing to the remote node. Besides, InfiniBand provides
atomtic operations on remote memory regions. InfiniBand
needs to pin and register the memory before it accesses
these memory spaces. Communication through InfiniBand
is handled between queue-pairs (QPs). A QP consists of
two queues to handle send and receive requests, respectively.
The RDMA requests are submitted to the send queue. Every
queue is associated with a completion queue, where the
InfiniBand interface or host channel adapter (HCA) confirms
the completion of either send or receive operation.

D. CUDA-AWare MPI Library
Message Passing Interface (MPI) is the de-facto stan-

dard for parallel application development in the HPC do-
main. MVAPICH2 is a popular open-source implementa-
tion of MPI for InfiniBand, 10Gigabit Ethernet/iWARP and
the emerging RDMA over Converged Enhanced Ethernet
(RoCE). MVAPICH2 unifies data movement from/to GPU
and host memories through the standard MPI semantics.
This design was first proposed in [5]. MVAPICH2 achieves
this through the Unified Virtual Addressing (UVA) feature
that is provided starting from CUDA 4.0. MVAPICH2
further optimizes the performance of inter-node GPU-to-
GPU communication by pipelining transfers from GPU to
host memory, host memory to remote host memory over
InfiniBand and finally from remote host to destination GPU
memory. The three stage pipelining results in a significant
boost in communication performance between GPUs on
different nodes. MVAPICH2 also provides multiple solu-
tions for intra-node GPU-to-GPU communication between
processes, using shared memory and CUDA IPC.

III. OVERVIEW OF THE EXISTING DESIGN
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Figure 1: Overview of GDR Rendezvous Protocol Design

For GPU-to-GPU communication, meta-data (header),
which includes the necessary information for communication
(e.g. data start address, data size, tag information), usually

resides on CPU host buffers, while message data that needs
to be exchanged is located on GPU device buffers.

The eager protocol is traditionally the most performing
design for small message sizes. One straightforward imple-
mentation for GPU-to-GPU communications relies on the
host-to-host IB transfers. Sender first copies data from de-
vice buffer to temporary pre-registered host memory buffer,
then it directly write data to pre-registered target buffer
sitting in receiver host memory. When the receiver detects
the arrival of data, it copies data from its host temporary
buffer to the final destination in device memory. Obviously,
the two cudaMemcpy calls, one at the sender and the other
at the receiver side, make this design inefficient. A detailed
presentation of an efficient alternative implementation is
shown in the next section.

Some previous work [10] has shown that, when GDR
is available for GPU-to-GPU communications, it is more
efficient to disable the eager protocol and to employ the ren-
dezvous protocol for all messages sizes. Figure 1 illustrates
the three steps to transfer data from a GPU device on one
node to a GPU device on a remote node using rendezvous
protocol. In the beginning, the source process starts a hand-
shake with the target process to get the target address infor-
mation (1:RTS and 2:CTS). After that, the source process
writes data to the target process using RDMA (3:Transfer).
With this design, an initial synchronization phase is required
for all message sizes, which adds a relatively large overhead
for small messages. The upside is the ability to write the
data directly to the final GPU memory destination through
RDMA, thereby avoiding additional memory copies.

IV. PROPOSED DESIGN FOR GPU-TO-GPU
COMMUNICATION EAGER PROTOCOL

In this section, we propose an improved implementation
of the eager protocol for the GPU-to-GPU communication.
Figure 2 shows the overview of our proposed designs, which
include two parts: sender side and receiver side. Number
“1” and “2” represent the first and second communication
steps in the GPU-to-GPU communication. In the following
subsections, we discuss these two parts, respectively.
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Figure 2: Overview of Proposed GDR Eager Designs
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A. Sender Side Design
On sender side, we introduce the sglist-based design. The

sglist (scatter-gather list) scheme leverages the gather/scat-
ter feature provided by InfiniBand Memory semantics. It
takes advantage of the HW capability of processing non-
contiguous buffers on both send and receive sides, the so-
called Send-Gather and Receive-Scatter operations.

For GPU-to-GPU communication, the meta-data (header)
is usually stored on CPU host buffer, while message data is
located on GPU device memory. There are two solutions
to transfer these two parts. One solution is to explicitly
combine meta-data and data, by copying the data from
device to host memory, and then sending the combined
data. The other method is to use two IB send operations
back-to-back, respectively for the header and the data. For
the latter method, we need to ensure the delivery ordering
between header and data parts: the header should arrive at
the destination before the data. Clearly, neither method is
ideal, due to additional operations involved.

To overcome the limitation, we introduce the sglist-based
design. By using sglist, sender can combine the transfer
of header and data parts by launching one IB operation.
Compared to the first solution, sglist utilizes low-level IB
communication verbs and thus demonstrates much better
performance.

B. Receiver Side Design
1) Naive Design: On the receive side, the naive design,

shown as “2A” path in Figure 2, uses CUDA memory copy
API (cudaMemcpy) to move the data between host buffer
and device buffer. After the receiver side gets the data from
the sender, it checks whether the destination is on device
or not through header information. If the destination is on
device, it will use the cudaMemcpy API to copy the message
data from the temporary receive buffer, located on host
memory, to the final destination in device memory, through
the PCIe.

For the naive design, full PCIe bandwidth is available
but it incurs a large initial overhead, due to the cud-
aMemcpy HW/SW implementation. Figures 3(a) and 3(b)
compare the GPU-to-GPU latency and bandwidth between
current rendezvous GDR protocol (“MV2-GDR”) and eager
protocol using naive cudaMemcpy for host-to-device data
transfer (“NaiveCopy”), respectively. “NaiveCopy” shows
around 10 µs latency for small message sizes while “MV2-
GDR” achieves lower latency, which is around 6 µs. This is
largely due to the fact that cudaMemcpy is a very expensive
operation, which contributes around 8 µs to “NaiveCopy”
latency. Also, “NaiveCopy” only achieves an average of 30%
of the peak bandwidth achieved by “MV2-GDR”, on the
small message sizes (ranging from 0 to 8KB). Consequently,
in the evaluation part, we take the existing rendezvous
GDR protocol as the baseline and evaluate and compare its
performance with new proposed designs.

2) Loopback Design: To avoid the expensive cudaMem-
cpy operation used in naive design, we propose the Loop-
back design. This design relies on the IB verbs to implement
the transfer from host to GPU memory, using GPUDirect
RDMA. After the matching with header data, the IB adapter
is programmed to read the data from the temporary receive
buffer on host to the destination memory on device. The
“2B” path in Figure 2 illustrates this procedure. This design
fully utilizes the GDR capability of IB and thus avoids the
calling of expensive cudaMemcpy API used in naive design.
Basically, Loopback design has full PCIe bandwidth on
GDR and delivers lower latency. However, its performance
is affected by PCIe peer-to-peer HW limitations (e.g. on
Intel Sandy Bridge) and it consumes additional bandwidth
available to the network adapter, as data has to travel three
times across its PCIe link.

3) Fastcopy Design: Fastcopy is a new low-latency host-
GPU copy data-path experimentally provided by NVIDIA.
Basically it offers three sets of primitives:

• Pin/Unpin, implemented through the kernel-mode
GPUDirect RDMA APIs, used to setup/tear down HW
mappings of GPU memory buffers; those mappings are
backed by one PCIe BAR of the GPU and come in
64KB-aligned chunks.

• Map/Unmap, which pages are memory-mapped into
a contiguous user-space CPU address range. Once
mapped in user-space, the CPU can use standard load/-
store instructions (MMIO) to access the GPU memory.

• Copy to/from PCIe BAR, a couple of highly tuned func-
tions implemented in terms of Intel SSE instructions.

The use of these APIs is labeled as “2C” path in Figure 2.
To avoid the unnecessary buffer pinning/unpinning and map-
ping operations, we extended the registration cache design
to keep track of the GPU buffers. When the application calls
CUDA APIs to allocate the device buffer in the first time, the
MVAPICH2 library registers this buffer. If the application
reuses the same buffer, the MVAPICH2 library will fetch
out the registered buffer directly instead of re-registering it.
By taking advantage of the registration cache, MVAPICH2
can average the cost of pinning/unpinning and mapping
operations. Also, for unpinning operations, we intercept the
CUDA APIs related to device memory release and unregister
the device buffer from registered buffer list. After getting all
necessary information for the data transfer, we call the low-
level copy API to move the data between host and device. As
for the cudaMemcpy API, there are two corresponding low-
level APIs: Host-to-Device and Device-to-Host copies. From
the perspective of the access to the GPU BAR, we name
Host-to-Device as WRITE and Device-to-Host as READ.
Probably thanks to HW level architectural optimizations like
write-posting and write-combining which allow for efficient
bus utilization, WRITE bandwidth is around 4 GB/s, while
READ bandwidth only reaches around 20 MB/s. By taking
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Figure 3: Comparison of Rendezvous GDR and Eager Naive Designs

this limitation into consideration in our design, we utilize
the Fastcopy techniques for Host-to-Device transfer only.
Compared to Loopback design, Fastcopy only burns CPU
cycles because of its CPU driven nature. However, it is still
limited by PCIe bandwidth and affected by NUMA effect.

V. PERFORMANCE EVALUATION

In this section, we describe our experimental testbed and
evaluate the proposed design with micro benchmarks and
end-applications.

A. Experiment Setup

Cluster Specification A B Wilkes
CPU Processor Intel E5-2670 Intel E5-2690 v2 Intel E5-2630
CPU Clock 2.60 GHz 3.00 GHz 2.60 GHz
Socket Type Dual-Socket Dual-Socket Dual-Socket
Cores per Socket 8-Core 10-Core 8-Core
CPU Memory 32 GB 128 GB 64 GB
NVIDA GPUs Tesla K40c Tesla K40m Tesla K20
GPUs per Node 2 1 2
GPU Memory 12 GB 12 GB 5 GB
Compilers gcc 4.4.7 gcc 4.4.7 gcc 4.4.7
MPI Library MVAPICH2-GDR MVAPICH2-GDR MVAPICH2-GDR
Mellanox Interconnect IB FDR Connect-IB FDR IB FDR

Table I: Experimental Environment

We used three clusters in our experiments and their spec-
ifications are listed in Table I. Point-to-point experiments
and the evaluation of GPULBM were conducted on Cluster
A, We evaluated the collective operations and HOOMD-
blue application on Wilkes Cluster with up to 64 GPU
nodes where each node has two NVIDIA Tesla K20 GPU
accelerators. In addition, we evaluated the point-to-point
latency and bandwidth on Cluster B, which is equipped
with Intel IvyBridge architecture and NVIDIA K40m GPUs.
The Wilkes is deployed in November 2013 and is the UK’s
fastest academic cluster. It achieves a 240TF performance
for High Performance Linpack, which ranks it the 166 in
latest Top500 list. Also, the Wilkes is ranked second in the
worldwide Green500 ranking.

The Fastcopy design requires inserting additional linux
driver into each GPU device. As we do not have permission

to insert driver module on remote clusters, we only evaluated
the MV2-GDR and proposed Loopback design on Wilkes.
Based on the results and analysis on cluster A with the Fast-
copy design, we are confident that the overall performance
of the Fastcopy design on other clusters will follow similar
trend as that on cluster A.

B. Evaluation of Point-to-Point Micro Benchmark
In this section we evaluate our proposed design by com-

paring it with the existing GDR solution using rendezvous
protocol (MV2-GDR). MV2-GDR utilizes the potential of
GDR to facilitate the data transfer between CPU memory
and GPU memory for both inter-node and intra-node com-
munications.

We chose three representative micro benchmarks from
OMB-GPU [12]. OMB-GPU is an extension to OMB (OSU
Micro-benchmark) that allows users to compare the per-
formance of MPI libraries on GPU clusters. OMB-GPU
allocates the data on device memory and use them di-
rectly in MPI communication operations. Since point-to-
point communication pattern is widely used in GPGPU
applications, our evaluation of micro benchmarks provides
good perspective for real GPGPU applications as well.

To verify the benefit of proposed design, we evaluate
the point-to-point osu latency, osu bw (bandwidth) and
osu mbw mr (Multiple Bandwidth / Message Rate) bench-
marks.

Basically, we measure the micro benchmarks in two
communication patterns. In the graphs, “H-D” represents
that sender side generates the data on CPU host buffer
and sends it to the device buffer on receiver side. “D-D”
represents that sender side generates the data on GPU device
buffer and sends it to the device buffer on receiver side over
the network. These two patterns can measure and compare
the host to device transfer on receiver side across different
designs.

1) Evaluation of Latency: Figures 4(a) and 4(b) compare
the performance across different designs for “H-D” and “D-
D” latencies, respectively. In general, both Loopback and
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Fastcopy designs achieve better performance than existing
GDR design. In the case of “H-D”, compared to GDR,
Loopback and Fastcopy achieve up to 50% and 63% latency
reduction, respectively. And Fastcopy achieves an additional
27% lower latency compared to Loopback.

In the case of “D-D”, compared to GDR, Loopback and
Fastcopy achieve up to 12% and 45% latency reduction,
respectively. And Fastcopy achieves an additional 44% lower
latency compared to Loopback for 4KB message size.

2) Evaluation of Bandwidth: Figures 5(a) and 5(b) com-
pare the performance across different designs for “H-D”
and “D-D” bandwidths, respectively. Similar to latency, both
Fast-Copy and Loopback designs achieve better performance
than existing GDR design. In the case of “H-D”, compared to
GDR, Loopback and Fastcopy achieve up to 5.5x and 7.3x
bandwidth improvement, respectively. And Fastcopy gains
an average of 1.8x improvement compared to Loopback.

In the case of “D-D”, compared to GDR, Loopback
and Fastcopy achieves up to 1.1x and 1.7x bandwidth
improvement, respectively. The reason for this small “D-
D” bandwidth improvement is due to SandyBridge internal
limitations.

Figures 6(a) and 6(b) show the latency and bandwidth
performance of “D-D” on Cluster B. Compared to MV2-
GDR, Loopback achieves an average of 4% lower latency,
while Fastcopy gains 35% lower latency on average. On
Cluster B, the presence of the PCIe switch connecting the
IB card and the GPU improves radically the performance
for “D-D”. The Sandy Bridge bandwidth cap at roughly
800 MB/s disappears, so it reaches 2.2GB/s. Loopback and
Fastcopy bandwidth are respectively up to 1.1x and 2x
better than MV2-GDR, while Fastcopy is 1.7x better than
Loopback.
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3) Evaluation of MBW MR: Figure 7 compares the per-
formance across different designs for “D-D” osu mbw mr.
In this case, compared to GDR, Loopback design looses
5% bandwidth and message rate on average; However,
Fastcopy gains an average of 1.6x improvement on both
bandwidth and message rate. For messages larger than 512

Bytes, the message rates of all three designs drop. This
is true considering the fact that we increase the message
size while the maximum bandwidth is fixed for certain node
configuration.

C. Evaluation of Collective Micro Benchmark
Besides the point-to-point communications, we evaluated

the proposed designs on WILKES with collective com-
munications. In general, MPI collective communications
are implemented over point-to-point operations. We have
evaluated Gather, Allgather and Alltoall, which are widely
used collective operations in large-scale applications.

The existing MVAPICH2 library provides an optimiza-
tion for all collective communication from GPU memory.
For small messages, MVAPICH2 copies data from device
memory onto the host memory, performs the collective
operation on CPU hosts and finally copies the accumulated
data back on the respective device memory. This design
reduces the number of CUDA memory copies between hosts
and devices. While for large messages, MVAPICH2 relies
on the host-based pipelining design to hide the CUDA
memory copy overheads. Beyond that, MVAPICH2 offers
an advanced design for Alltoall [13], which uses a dynamic
scheme to pipeline the communication at the level of col-
lective algorithm.

In the current MVAPICH2, Gather operation is imple-
mented with the root posting non-blocking receives from all
processes and every other process posting a blocking send
to the root. The non-blocking nature of GDR allows the
transfers to progress in parallel and thus shows lower latency
compared to CUDA memory copies that happen at the start
and end of the previous implementation in MVAPICH2.

Figure 8 shows the latency comparison between the ex-
isting MV2-GDR design and proposed Loopback design for
three collective operations. Compared to MV2-GDR, Loop-
back achieves up to 49%, 47% and 67% latency reduction in
Gather, Allgather and Alltoall latency for 256, 32 and 256
Bytes message sizes, respectively.

D. Evaluation of End-Applications
In this section, we evaluate the proposed design across two

representative end-applications: GPULBM and HOOMD-
blue.

1) Evaluation of GPULBM: Lattice Boltzmann Method
(LBM) is a popular computational fluid dynamics (CFD)
method that is used when a high level of detail is required
in a relatively small computational domain. Since the mul-
tiphase LBM can simulate the interaction and dynamics of
multiple fluids, it has been used widely across the world.
GPULBM is a parallel distributed CUDA implementation
of Lattice Boltzmann Method (LBM) for multiphase flows
with large density ratios [14]. It is an iterative application
that operates on 3D data grids. The decomposition of data
is along the Z-axis. And the number of elements involved in
communication can be calculated as the product of X and
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Figure 4: Evaluation of Latency with 2 GPU Nodes on Cluster A
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Figure 5: Evaluation of Bandwidth with 2 GPU Nodes on Cluster A
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Figure 6: Evaluation of D-D Communication with 2 GPU Nodes on Cluster B

Y dimensions of the grid times the required 6 degrees of
freedom, with each element being of float type. To compare
the performance across three designs, we conducted the
experiment on cluster A using two GPU nodes equipped
with Tesla K40c accelerators. Since we target the evaluation
of Loopback and Fastcopy designs, we restrict the sizes
of 3D data grids within the eager threshold (e.g. 16KB).
Also, LBM requires the dimension size of X and Y to
be the multiple of 32. As a result, we only conducted the

experiment with various sizes in Z dimension.

Figure 9(a) measures the overall execution time of LBM
with various grid sizes. Loopback and Fastcopy designs
achieve up to 18.8% and 23.4% reduction in total execution
time for 32x32x4 3D grid size. Figure 9(b) demonstrates the
decomposition time of LBM application in terms of compu-
tation time and total MPI communication time for 32x32x4
grid case. Compared to MV2-GDR, 5.3% and 15.4% reduc-
tions in MPI communication time are achieved by Loopback
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Figure 8: Evaluation of Collective Operations with 16 GPU Nodes on Wilkes

and Fastcopy, respectively. Besides the reduction in MPI
communication time, the new design also enables better
overlap between computation and communication, which
contributes much more reduction in overall execution time.

2) Evaluation of HOOMD-blue: HOOMD-blue (Highly
Optimized Object-oriented Many-particle Dynamics) is a
general-purpose particle simulation toolkit [15] that is
widely used in molecular dynamics areas. Users can define
particle initial conditions and interactions in a high-level
python script. The HOOMD-blue benefits from the advanced
features of NVIDIA GPUs (e.g. GDR) and scale well to
thousands of GPUs.

GDR provides a direct point-to-point data path between
GPU and IB and thus delivers a significant decrease in
GPU-GPU communication latency for HOOMD-blue. FDR
InfiniBand interconnect on Wilkes cluster allows HOOMD-
blue to achieve good scalability. HOOMD-blue utilizes non-
blocking MPI Isend/MPI Irecv and collectives for most
data transfers. For HOOMD-blue, we use cluster A to
measure the benefit gained from the Loopback and Fastcopy
designs. And for the scalability of HOOMD-blue, we further
measure the weak and strong scaling on Wilkes. Similar to
evaluating the GPULBM, we choose comparatively small
particle sizes in order to enable the eager protocol used
in MVAPICH2. Even though using more GPU nodes with
small particle sizes makes the application communication-
bound, the comparison still highlight the benefit gained
from proposed design in terms of MPI communication time
and overall performance. In our experiment, bundled lj-
liquid-bmark script is used as the input file to evaluate the
HOOMD-blue.

Figure 10(a) evaluates both Loopback and Fastcopy
designs. Compared to MV2-GDR design, Loopback and
Fastcopy achieves up to 12% and 12.5% improvement in
TPS (Transaction per Second) for 4K particles. And Fig-
ure 10(b) compares the performance between MV2-GDR
and Loopback designs with 64 GPU nodes on Wilkes.
Proposed Loopback design outperforms the existing MV2-
GDR design by up to 20.1% improvement in TPS for 64K

particles. Furthermore, we measure the strong and weak
scaling of HOOMD-blue on Wilkes. For strong scaling, we
fix the total number of particles to 64K, while varying the
number of GPU nodes used. In the experiment for weak
scaling, we keep the number of particles per GPU node
to 2K. Figure 11(a) and Figure 11(b) show the overall
performance in average TPS for weak and strong scaling. As
is shown, using 16 GPU nodes in strong scaling achieves the
highest average TPS for both designs. However, the overall
performance drops in weak scaling with increasing number
of GPU nodes due to the small-scale number of particles
involved in the computation. As a result, the application be-
comes communication-bound with larger number of GPUs.
Compared to MV2-GDR, Loopback design demonstrates up
to 17% and 20.1% performance improvement in average
TPS for cases of 64 GPUs on strong and weak scaling,
respectively.

VI. RELATED WORK

In HPC area, enabling the use of accelerators such as
GPUs and co-processing with programming models such as
MPI and PGAS has been explored by many researchers [16–
18].

Making MPI libraries CUDA-Aware and extending MPI
to support communication on GPU clusters have also been
the focus for several years. Wang et.al proposed optimized
CUDA-based GPU-to-GPU communication for InfiniBand
clusters which uses CPU hosts as intermediate buffering
units for pipelined internode GPU communication across
MPI processes [5]. Some researchers have also explored
optimization of GPU-to-GPU communication that involves
non-contiguous MPI datatypes [19–22]. Potluri et.al pro-
posed the first solution to harness NVIDIA’s GPU Direct
RDMA (GDR) feature for MPI libraries and introduced
hybrid solutions that benefit from the best of both GDR
and host-assisted GPU communication [10].

In addition, the idea of sourcing and sinking the network
traffic from GPUs has been explored as well. Stuart et.al
introduces DCGN (Distributed Computing on GPU Net-
works) a framework that allows GPU threads to send and
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Figure 9: Evaluation of GPULBM with 2 GPU Nodes on Cluster A
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Figure 10: Evaluation of HOOMD-blue with Increasing Number of Particles
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Figure 11: Evaluation of HOOMD-blue with Strong and Weak Scaling on Wilkes

receive data with commands similar to MPI [23]. Oden et.al
proposes the framework that allows the GPU to control
the network device and independently source and sink
network traffic, by modifying the device drivers and user
space libraries of InfiniBand network cards and GPUs [24].
However, this approach deteriorates the performance be-
cause of the overhead of work request generation on GPUs
that is suitable for CPUs, which are highly optimized for
single-threaded work. Aji et al. introduces the MPI-ACC, a
framework for GPU support that aims to provide portability
for both CUDA and OpenCL [25].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed several techniques to
improve the GPU-to-GPU communication using eager pro-

tocol. With the new proposed design, the MVAPICH2 library
can boost more efficient CUDA-Aware MPI communications
achieving better latency and bandwidth. Also, the proposed
designs seamlessly integrate existing designs so as to exhibit
equal performance for larger messages using rendezvous
protocol. The experimental results exhibit sustained im-
provement of proposed designs. Our experimental results
across three platforms with different GPU configurations
validate the portability and stability of our designs.

In the future, we plan to explore proposed design with
other communications involving GPUs. For instance, Fast-
copy technique can be investigated in GPU-to-GPU commu-
nication involving non-contiguous MPI derived Datatypes.
Support for the new proposed designs will be available in
future MVAPICH2-GDR releases.
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