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Abstract—Increasing number of MPI applications are being
ported to take advantage of the compute power offered by
GPUs. Data movement continues to be the major bottleneck
on GPU clusters, more so when data is non-contiguous, which
is a common case in scientific applications. Existing techniques
to optimize MPI datatype processing to improve performance
of non-contiguous data movement handle only certain data
patterns efficiently while incurring overheads for the others.
In this paper, we first propose a set of optimized techniques
to handle different MPI datatypes. Next, we propose a novel
framework (HAND) that enables hybrid and adaptive selection
among different techniques and tuning to achieve better per-
formance with all datatypes. Our experimental results using
modified DDTBench suite demonstrate up to 98% reduction
in datatype latency. We also apply datatype aware design
on an N-Body particle simulation application. Performance
evaluation of this application on a 64 GPU cluster shows
that our proposed approach can achieve up to 80% and 54%
increase in performance by using struct and indexed datatypes
compared to the existing best design. To the best of our
knowledge, this is the first attempt to propose a hybrid and
adaptive solution to integrate all existing schemes to optimize
arbitrary non-contiguous data movement using MPI datatypes
on GPU clusters.
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I. INTRODUCTION

It is becoming increasingly common for High Perfor-
mance Computing clusters to use accelerators, such as
NVIDIA GPUs, to push their peak compute capabilities.
This trend is evident in the TOP500 list released in Novem-
ber 2013, where 53 systems make use of accelerator technol-
ogy [1]. An increasing number of scientific applications are
also being ported to take advantage of such clusters [2, 3].
Many of these applications work on multi-dimensional data
which gives rise to inter-process communication involving
non-contiguous data (e.g. multi-grid (MG) on a sequence
of meshes in fluid dynamics). Table I summarizes a set
of representative applications which use non-contiguous
datatype. For these applications, data movement contin-
ues to be a primary bottleneck on GPU clusters and the
movement of non-contiguous data poses a bigger challenge.
GPU programming platforms, like CUDA, offer memory
copy APIs to move multi-dimensional data between GPUs

*This research is supported in part by National Science Foundation grants
#OCI-0926691, #OCI-1148371 and #CCF-1213084.

and CPUs for convenience. However these yield poor per-
formance, especially for sparse data distribution, such as
SPECFEM3D oc kernel in geophysical science. Most state-
of-the-art applications use hand-coded CUDA kernels to
pack data on the device before communicating it between
processes. This approach gives better performance but has
several drawbacks. It increases the effort required by the
application developers and it adds the perpetual overhead
of tuning and maintaining the code for different existing
architectures and for newer architectures as they emerge.
Such effort is substantially higher when data packing and
movement steps have to be overlapped for better perfor-
mance.

Application Testname Datatype Access Pattern
Fluid Dynam-
ics

NAS MG y vectors 3D face exchange in y
direction

Geophysical SPECFEM3D oc indexed unstructured exchange of
Science SPECFEM3D cm struct on indexed data for diverse earth lay-

ers
Atmospheric
Science

WRF y sa struct on subarray struct of 2D/3D/4D face
exchanges in y direction

Quantum
Chromody-
namics

MILC su3 zd nested vectors 4D face exchange in z
direction

Metereological
Science

COSMO 3D subarray halo-update

Stencil Code Jacobi 2D subarray 5 point 2D Stencil

Table I: A representative set of applications using various
datatypes

User-defined datatypes in MPI enable developers to rep-
resent non-contiguous data and to use any of the MPI com-
munication routines to move this data between and among
processes. MPI runtimes can take care of handling the
movement of non-contiguous data efficiently, while hiding
all the complexity from the user. CUDA-aware MPI libraries
have enabled applications to use standard MPI interfaces to
move data between NVIDIA GPUs like they would move
data between hosts [4, 5]. They make it easier for developers
to express communication in CUDA+MPI applications. This
approach also enables the MPI runtimes to optimize data
movement between GPUs using advanced features (such as
GPUDirect RDMA and CUDA IPC) and techniques (such
as pipelining) which are hard for application developers to
use and maintain directly in applications [6, 7].

1) Motivation: Table II summarizes the existing efforts
to optimize datatype-based communication on GPU clusters.



Design Datatypes Enhancements [8] [9] [10] This Paper
Direct Transfer all active scheduling N N N Y

Targeted Kernels

vector 2D thread block N Y N Y
subarray 1/2/3/4D targeted N N N Y
indexed block new targeted N N N Y
the above three adaptive tuning N N N Y

Transformation others
N Y N Y

automatic switch N N N Y
adaptive tuning N N N Y

Host Bypass others

N N Y Y
automatic kernel N N N Y
selection
adaptive tuning N N N Y

HAND all automatic scheme N N N Y
selection

Table II: Comparison with Existing Work
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Figure 1: Overview of the HAND Framework

Some of them have used CUDA memory copy APIs to direct
transfer multi-dimensional data on the device while pipelin-
ing data movement between GPU device and host memory
with transfer over the network. There have also been efforts
to use CUDA targeted kernels to pack/unpack vector and
3D subarray in the MPI library [8]. This approach ignores
the specific cases of 1D/2D/4D subarray and indexed block.
Also, without 2D thread block support, vector kernels cannot
fully explore the parallelism on GPUs.

Furthermore, Wang et al. [9] proposes a transformation
scheme to convert non-contiguous data into vectors, before
parallelizing the packing of each vector, using a CUDA
kernel. Without adaptive tuning, this scheme exhibits bad
flexibility for different shapes of datatype. Also, this scheme
discards useful information provided by MPI datatypes,
applying a uniform transformation for all shapes of data.
This introduces inefficiencies (e.g. subarray). And when
datatype has an irregular distribution (e.g. indexed with non-
uniform displacement), the process of transforming them
into vectors can result in a large number of small vectors and
kernel launches, thus hurting performance. Jenkins et al. [10]
represents datatype information in a pattern conducive to
parallel access on GPUs and carry out both pre-processing
and data packing directly on the device. When data density
is high, packing using GPU kernels can incur unnecessary
overheads compared to direct transfer between CPU and
GPU. Similarly, when datatype has a regular distribution,
the pre-processing on the GPU can incur an overhead. A
better choice is to actively schedule the direct transfer to
avoid the overhead of kernel invocation. Further, rather than
adaptive tuning, assigning one thread per element, as is done
in their effort, may not be optimal for all data shapes (e.g.
vector). It is important that a hybrid MPI datatype processing
framework should consider the information available about
the structure of data (e.g. indexed block) and automatically
choose a scheme to avoid above limitations appropriately.
Such a framework can optimize the datatype packing/un-
packing transparently, thus provide good programming effi-
ciency for application users. This paper focuses on such a
design and its evaluation.

2) Contribution: In this paper, we present a compre-
hensive framework (shown in Figure 1), Hybrid Approach
to Accelerate Non-contiguous Data Movement (HAND),
for efficient communication using MPI datatypes on GPU
clusters. We propose designs to improve the performance
of different datatype processing and packing techniques
spanning Direct Transfer, Targeted Kernels, Datatype
transformation, and Host Bypass. We also propose a three-
layer framework that chooses among these alternatives and
tunes the chosen technique for improved performance. We
make the following key contributions through this paper:

1) Propose a HAND framework, fully integrated with
MVAPICH2 library [4], that facilitates the dynamic
selection and tuning of these designs to support non-
contiguous data movement on GPU clusters using
arbitrary user-defined datatypes.

2) Propose optimizations for processing and packing
user-defined MPI datatypes on NVIDIA GPUs using
targeted kernels and datatype transformation.

3) Propose a novel GPU kernel-based host bypass design
to efficiently pack/unpack arbitrary non-contiguous
datatypes.

4) Present a quantitative evaluation of the proposed
framework across clusters with diverse GPU config-
urations using micro benchmarks, micro application
kernels and applications.

The rest of the paper is organized as follows. In Section II,
we present the overview of proposed HAND design. We
then introduce and analyze the redesign of targeted kernels
and optimizations of transformation, and the design of host
bypass in Section III and IV, respectively. In Section V,
we discuss a case study of redesigning N-Body application
using HAND. We present experimental results in SectionVI.
Finally, we summarize the related work in Section VII and
conclude the paper in Section VIII.

II. PROPOSED FRAMEWORK OF HAND
A. Design Overview of HAND

Figure 2 provides an overview of the proposed HAND
framework within MVAPICH2 library. HAND integrates all
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Figure 2: Detailed Overview of the HAND Framework

four schemes and dynamically selects the most suitable one
based on the characteristic of the datatype. We present the
three-layer HAND design in a top-down approach.

All modules of HAND are within the MPI communi-
cation routines. First, preprocessing and design selection
module receives the datatype information from applica-
tion. Inherited from the dataloops design in MPICH [11],
in MVAPICH2 library, preprocessing module converts
datatype information to iov structure representing tree struc-
ture for arbitrary datatype, which consists of a list of
〈start address, block length〉 pairs for each contiguous
subblock defined by datatype primitives. Then, HAND
chooses the proper scheme based on the shape of datatypes
represented in iov structure. HAND integrates four schemes
and represents them as four modules:

Direct Transfer module (DT) applies CUDA API to copy
each subblock of the datatype. Compared to other kernel-
based scheme, DT avoids the overhead of kernel invocation
which is the key consideration for contiguous and dense
datatypes packing/unpacking. Thereby, rather than treating
DT as a last choice, HAND treats DT as a good candidate
for contiguous and dense datatypes.

Targeted Kernel module (TK) handles specific shapes
of datatypes. By fully exploring the iov information of
these specific datatypes, targeted kernels are designed to
manipulate these datatypes in the most efficient manner.

Transformation module (TR) represents datatype in-
formation in an intermediate structure (e.g. vector array)
and then packs/unpacks each intermediate structure using
targeted kernels (e.g. vector).

Host Bypass module (HB) bypasses the transformation of
iov structure and offloads the management of iov structure
and memory copy to GPU kernels. Compared to TR, HB
avoids the large number of kernel invocations for datatype
with irregular distribution.

HAND provides targeted kernels for (h)vector, subar-
ray and (h)indexed block; and for other non-contiguous
datatypes, HAND chooses the more suitable scheme be-
tween transformation and host bypass based on the shapes of
datatype. In the HAND framework, other datatypes include

irregular one-layer datatypes (e.g. indexed and struct), and
hierarchical datatypes (e.g. nested vectors).

Besides the basic type and count defined in MPI datatypes,
targeted kernels only need a subset of the whole iov structure
because of the regularity of corresponding datatypes.

Except for the direct transfer, each scheme has a re-
spective kernel wrapper which optimizes thread block and
configures kernel parameters (e.g. splitting memory between
L1 cache and shared memory). Both preprocessing routines
and kernel wrappers are executed on CPU hosts, and all
corresponding kernels are launched on GPU devices.

III. REDESIGN OF TARGETED KERNELS AND
OPTIMIZATIONS OF TRANSFORMATION SCHEME

In this section, we discuss redesign of targeted kernels and
optimizations of transformation scheme. Figure 3 shows the
design for respective optimizations. In our experiment, we
test the targeted kernels (TK) with classic ping-pang latency
on hvector, 4D subarray and indexed block datatypes.

vector arraysdims, order
full_size[Dim]
sub_size[Dim]

offset[Dim]

uniform 
block length
 and stride

uniform block 
length,

non-uniform 
stride[n]

1D/2D/3D/4D 
subarray 
kernels

Targeted Kernel for 
subarray

subarray Kernel 
Wrapper

(h)vector kernel
(2D thread 
block, etc.)

(h)vector Kernel 
Wrapper 

(h)indexed_
block Kernel

indexed_block 
Kernel Wrapper

vector kernel
(2D thread 
block, etc.)

vector Kernel 
Wrapper

Transformation
Scheme

Targeted Kernel for 
(h)vector

Targeted Kernel for 
indexed_block

Figure 3: Design Overview of Targeted Kernels and Trans-
formation Scheme

For regular datatypes, we extend previous targeted ker-
nels [8, 9] in terms of redesign of kernels and general
optimization by adaptive tuning.

A. Redesign of (h)vector Kernels
Vector datatype specifies strided blocks of data of oldtype

which is useful for Cartesian arrays. Hvector datatype cre-
ates non-unit strided vectors and is useful for composition
(e.g. nested vector). Hvector is identical to vector, except
that the stride is given in bytes, rather than in elements. As
shown in Figure 3, (h)vector has uniform block length and
stride which provides opportunity for targeted kernels.

Previous work [8, 9] provides targeted kernel for (h)vector
with static 1D/2D thread block. 1D thread block incurs
performance loss for vector with large block length (e.g.
dense vector). Without adaptive tuning, static 2D thread
block losses flexibility for different shapes of datatypes.
To overcome these limitations, HAND utilizes adaptive 2D
thread block for both vector and hvector kernels. 2D thread
block enhances the thread level parallelism in terms of
count and block length. And the adaptive tuning dynamically
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selects the optimal thread block based on the shapes of
datatypes, thereby further improves the performance for
various datatypes.

Figure 4 evaluates the targeted vector kernel among 1D
thread block (TK-vector-1D), 2D thread block (TK-vector-
2D) and new adaptive thread block (TK-vector-Opt). This
experiment uses fixed count of 32 and increasing block
lengths. We just select the hvector because vector shares the
same routine. Compared to TK-vector-2D, TK-vector-Opt
exchanges the mapping order of thread block to provide
better thread access locality. In Figure 4, TK-vector-Opt
achieves an average of 77% and 5.5%, and up to 82% and
13.6% decrease in latency compared to TK-vector-1D and
TK-vector-2D, respectively.

B. Redesign of subarray Kernels
Subarray datatype specifies subarray of n-dimensional

array by using displacements and subsizes. As shown in
Figure 3, subarray routine needs array storage order, dimen-
sion, as well as full sizes, sub sizes and displacements on
each dimension. Previous work [8] uses targeted kernels for
3D subarray and applies direct transfer on other dimenional
subarrays. To make up this inefficiency, HAND provides tar-
geted kernels to handle 1D, 2D and 4D subarrays separately.
For other dimensional subarrays, either transformation or
host bypass scheme is selected. Furthermore, since appli-
cation programmers can specify either MPI C ORDER or
MPI FORTRAN ORDER for subarrays, our design offers
good programming efficiency by supporting both orders in
all targeted subarray kernels.

Figures 5(a) and 5(b) show the cases of 4D subarray
with various innermost and outermost dimension sizes. To
prevent overlapping, we leave the evaluation of 2D/3D
subarray to later micro-application-level evaluation. For 4D
subarray with various dimension sizes, new design provides
two targeted kernels: “LoopT” and “LoopX”. Suppose the
dimension sizes of 4D subarray are represented as X, Y, Z
and T in order, LoopT design maps 3D thread block of the
kernel onto X, Y, Z and each thread loop on innermost T di-
mension. LoopX design maps the 3D thread block onto Y, Z,
T and loop on outermost X dimension. Both kernels achieve
an average of above 85% improvement compared to direct
transfer (DT) which uses CUDA memory copy API, and TK-
subarray-LoopX exhibits additional up to 77% improvement
compared to TK-subarray-LoopT for innermost case. For
outermost case, TK-subarray-LoopT shows an average of
13% performance improvement with dimension size of X
larger than 32; while for small sizes of X, TK-subarray-
LoopX still achieves an average of 15% improvement. Based
on these observations, HAND introduces experienced switch
threshold for 4D subarray with large outermost dimension.

C. Redesign of (h)indexed block Kernels
Indexed block datatype is used to pull irregular subsets

of data from a single array with the uniform block length.

As shown in Figure 3, unlike vector which only needs
uniform displacement, indexed block needs the whole non-
uniform displacement arrays. Hindexed block is identical
to indexed block, except that the stride is given in bytes,
rather than in elements. Previous design [9] treats the in-
dexed block datatype as the general datatype and applies the
transformation scheme. As discussed in Section I, the trans-
formation scheme delivers significant performance degra-
dation if indexed block has non-uniform displacement. To
explore the property of same block length for indexed block,
new targeted kernel applies the simplified design of host
bypass kernel for both indexed block and hindexed block,
in which prefix-sum calculation is avoided because of uni-
form block length. Targeted kernel performs much better
than transformation schemes in most scenarios by avoiding
large number of kernel invocations. In Figure 6, compared
to direct transfer (DT), targeted kernel (TK-idxblk) shows
an average reduction in latency of 61% and 75% for cases
of fixed block length and fixed count, respectively.

D. Optimizations of Transformation Scheme
As shown in Figure 3, transformation scheme converts

non-contiguous datatypes into vector arrays and launches
targeted vector kernels to pack/unpack each vector array.
As discussed in Section II, HAND fully integrates four
schemes. For other irregular datatypes, rather than fully
relying on transformation scheme, the selector dynamically
chooses the optimal scheme. Also, selector offers the au-
tomatic switch from transformation scheme to host bypass
scheme if the former scheme creates too many small vector
arrays. To achieve this goal, HAND maps other datatypes
with regular distribution onto transformation scheme, while
maps the remaining arbitrary datatypes onto host bypass
scheme. Therefore, the HAND design can take advantage of
the benefit of transformation scheme on irregular datatypes
while avoiding performance loss in other cases.

In addition, existing transformation scheme in MVA-
PICH2 library utilizes vector kernels to pack/unpack arbi-
trary datatypes after transforming the iov structure to a list
of vector arrays. The performance of targeted vector kernel
directly decides the efficiency of transformation scheme.
Therefore, our redesign of targeted (h)vector kernels, dis-
cussed in Section III-A, directly boosts the performance of
transformation scheme.

IV. PROPOSED DESIGN OF HOST BYPASS SCHEME

This section covers in depth the design strategies and
characterizes the benefit of different strategies with micro
benchmarks in a top-down approach: host bypass prepro-
cessing routines, kernel wrappers and GPU packing kernels.

A. Preprocessing Routine
In preprocessing routine, our design passes down the iov

information directly onto GPUs. We propose two strategies
of copying the iov structure from CPU to GPU memory:
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“HB-packiov” and “HB-copyiov”. HB-packiov strategy al-
locates pinned device memory that can be accessed by both
CPU and GPU and applies dataloop functions to directly
pack iov structure onto pinned memory. Then, both CPU
kernel wrappers and GPU kernels can access the iov struc-
ture. HB-copyiov strategy allocates general device memory
so that only GPU kernels can access, yet with higher speed.
Before launching the kernels, the iov structure stored on
CPU memory should be copied to allocate device memory.
HB-packiov avoids additional CUDA memory copy and
performs better for datatypes with small block lengths.
However, with larger block lengths, the benefit of faster
memory access compensates the additional memory copy
for iov structure in case of HB-copyiov.

In our experiment, we test the ping-pang latency on
indexed datatype with non-uniform stride. Figure 7 evaluates
the performance of these two strategies. Compared to direct
transfer (DT), both strategies exhibit up to 99% improvement
with count size larger than 4 for the case shown in Fig-
ure 7(a), and achieve an average of 70% improvement for the
case shown in Figure 7(b). Rather than treating DT as the last
choice in transformation scheme [9], the HAND framework
introduces the experienced switch threshold of 4 to activate
DT for dense datatypes. Furthermore, Compared to HB-
packiov, HB-copyiov achieves an average improvement of
15% for the case of fixed block length. In contrast, HB-
packiov gains an average of 12% benefit compared to HB-
copyiov for the case of fixed count. Therefore, HAND
dynamically chooses between HB-packiov and HB-copyiov
for various shapes of datatypes.

Besides, there is startup overhead of allocating the device
buffer used to store iov structure. In our experiment, this
overhead is around 100us and 200us for HB-copyiov and
HB-packiov, respectively. Considering the overhead, the
threshold value of count will be 16 and 64 for HB-copyiov
and HB-packiov, respectively, for the case of fixed block
length. In fact, this startup overhead can be easily amortized
with multiple runs of the application even with small counts.
And this overhead can be ignored for datatypes with large
count even the application executes only once.

B. Kernel Wrapper
First, kernel wrapper optimizes the performance of

datatype with non-power-of-two counts. Since the maxi-
mum thread within one block is restricted to 1024, careful
manipulation of the threads is necessary to achieve good
performance. Rather than using external math library func-
tions, we resort to fast bit operations to calculate the nearest
power-of-two values for counts. Hence, we can minimize
the thread block size for datatype with smaller counts. Also,
the saving threads can be mapped to the dimension of block
length, which further improves the parallelism. Combined
with runtime dynamic thread block tuning based on the
shapes of datatypes, these optimization techniques can be
applied to other schemes and benefit different datatypes in
various ways.

Figure 8 shows that, compared to the original static
thread block (HB-Static), dynamic thread block tuning (HB-
Dynamic) gains 2% to 12% improvement for datatypes
with irregular counts. For datatypes with small counts, this
technique shrinks the size of thread block and thus reduces
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the overhead of thread launch and synchronization with
up to 12% improvement. And the minor improvement for
datatypes with large counts comes from the speedup of last
kernel launch with suitable thread block size.

Furthermore, kernel wrapper optimizes thread block map-
ping. To make it concise, we use tidx and tidy to illustrate
first and second thread block dimensions. Previous design
maps tidx to count and tidy to block length while new
design reverses the mapping order. This reordered mapping
facilitates successive memory accesses in tidy direction to
explore better data locality.

C. GPU Packing/Unpacking Kernels
The host bypass packing/unpacking kernels include two

parts: prefix-sum calculation and thread level memory copy.
All prefix-sum calculations [12] on an array of data are
commonly known as scan and we will use scan for the
remainder of the paper. Our new design includes two scan
strategies: sequential and parallel. The sequential scan re-
quires O(N) steps assuming N is the datatype count. In con-
trast, the parallel one needs O(logN) steps. Theoretically,
parallel scan is better than the sequential one. However, the
overhead of more instructions and thread synchronization
counteracts the benefits of parallelism for datatypes with
small counts. Therefore, host bypass kernel wrapper uses
experienced threshold to automatically switch between two
strategies. The second part of the kernels is the parallel
memory copy and both kernels adopt the same 2D thread
block where each GPU thread is responsible for the memory
copy of one or more datatype primitives. Since GPU packing
and unpacking kernels are symmetric, we only show the
skeleton of GPU packing kernels in Algorithm 1 and 2.

The time complexity of parallel and sequential kernels can
be expressed as indicated in Equations 1 and 2, respectively:

T par = P ∗ log(count) + iter + P overhead (1)

T seq = S ∗ count+ iter + S overhead (2)

P and S represent the average number of operations for
each GPU thread in parallel scan and sequential scan re-
spectively. Correspondingly, P overhead and S overhead
represents the overhead apart from scan and memory copy
operations for each thread (e.g. synchronization overhead).

Algorithm 1: GPU PACKING KERNEL WITH PARAL-
LEL SCAN
Input: dstbuf , iov structure, count
Output: desbuf

1 shared size t prefixsum[1024];
2 i← threadIdx.x;
3 j ← threadIdx.y;
4 offset← 1;
5 // exclusive parallel prefix-sum calculation
6 prefixsum[i ∗ blockDim.y + j]←
iov structure[j].iov len;

7 for int k = (blockDim.y) >> 1; k > 0; k >>= 1 do
8 // build sum in place up the tree
9 offset <<= 1

10 end
11 for int k = 1; k < (blockDim.y); k <<= 1 do
12 offset >>= 1
13 syncthreads();
14 // traverse down tree and build scan
15 end
16 syncthreads();
17 if j < count then
18 iter ← iov structure[j].srclen/blockDim.x;
19 for k = 0; k <= iter; k + + do
20 if i < iov structure[j].srclen then
21 dstbuf [prefixsum[i∗ blockDim.y+ j]+ i]
22 ← ∗((iov structure+ j).iov base+ i);
23 end
24 i← i+ blockDim.x;
25 end
26 end

We then evaluate GPU packing kernels with sequential
and parallel scans. In Figure 9, “HB-PAR” and “HB-SEQ”
represent one-step packing kernel with parallel scan and
sequential scan, respectively. “HB-PAR-2” represents two-
step kernel in which the first kernel implements the parallel
scan and the second one implements the memory copy. The
HB-PAR achieves a constant 20% improvement than two-
step kernel by avoiding the additional copy of intermediate
scan results between global memory and shared memory. For
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Algorithm 2: GPU PACKING KERNEL WITH SEQUEN-
TIAL SCAN
Input: dstbuf , iov structure, count
Output: desbuf

1 i← threadIdx.x;
2 j ← threadIdx.y;
3 // Sequential prefixsum calculation
4 if j < count then
5 // initialize block length,
6 // source and destination buffer displacements
7 for k = 0; k < j; k + + do
8 // calculate prefixsum for each subblock
9 end

10 iter ← iov structure[j].srclen/blockDim.x;
11 for ; k <= iter; k + + do
12 if i < iov structure[j].srclen then
13 dstbuf [prefixsum+ i]
14 ← ∗((iov structure+ j).iov base+ i);
15 end
16 i← i+ blockDim.x;
17 end
18 end

large count sizes, HB-PAR gains an average of 41% benefit
compared to HB-SEQ. However, for count sizes smaller than
16, HB-SEQ achieves an average of 9% benefit compared to
HB-PAR. This is mainly due to the fact that P in equation 1
is larger than S in equation 2, and the benefit of logarithmic
scan is hidden.

Further, our design considers two strategies to store the
intermediate prefix-sum values used in the kernel. This
intermediate shared memory space can be organized in either
1D array or 2D array format. To compare their performance,
we use the packing kernel with parallel scan and combine it
with one or two dimensional shared memory which stores
the intermediate scan values. As shown in Figure 10(a)
and 10(b), one dimensional shared memory (HB-PACKIOV-
1DSHM) gains an average of 26% and 17% performance
improvement for respective cases of datatype. This comes
from the fact that indexing on 1D shared memory facilities
shared memory access.

V. N-BODY APPLICATION ENHANCEMENT BY HAND

In this section, we propose a case study of N-Body
application. We apply datatype aware design for large
scale N-Body particles simulation [13] implemented with
MPI+GPGPU programming model which is widely used
HPC applications. A familiar example is an astrophysical
simulation in which each particle represents a galaxy or an
individual star, and the particles attract each other through
the gravitational force.

The simulation usually executes multiple times and we

GPU 1 GPU 2 GPU 3 GPU 4

GPU 1 GPU 2 GPU 3 GPU 4

Pack
Pack Pack Pack

Unpack Unpack

tbuf tbuf tbuf

tbuf tbuf tbuf tbuf

tbuf

MVAPICH2-GPU-Allgather (HAND Enhanced)

Unpack Unpack

Figure 11: Proposed Datatype Aware Design of N-Body
Particles Simulation

focus on the analysis of one iteration. Initially, each GPU
node gets a subset of particles and uses the GPU kernels to
calculate the forces for local particles. Then all GPU nodes
exchange data with others by MPI Allgather communication
as shown in Figure 11. After that, each GPU node updates
positions and velocities of local particles.

To illustrate the benefit of HAND, we extend the definition
of particle structure to simple particle and complex parti-
cle, and define two corresponding non-contiguous datatypes
above them. Both the transformation and HAND help to
pack/unpack the non-contiguous datatypes before/after the
GPU Allgather communications. In contrast, direct transfer
copies the whole structure of particles between CPU and
GPU, and relies on CPU Allgather communications.

typedef struct {
double position_x, position_y, position_z ;
double velocity_x, velocity_y, velocity_z;
double force_x, force_y, force_z;
double mass;
float properties[20]; //complex struct only
int charge;

} Particle;

We declare struct datatype including all data members
above simple particle, and indexed datatype for force x,
force y, force z and charge data members above complex
particle, which are the minimum datasets that need to be
exchanged. We will show experiment results of our modified
design in Section VI-D.

VI. PERFORMANCE EVALUATION

In this section, we describe our experimental testbed and
evaluate HAND design with micro application kernels and
large scale applications.

A. Experiment Setup

We use two clusters in our experiments and their speci-
fications are in Table III. Most experiments are conducted
on Cluster A, and we run N-Body particle simulation on
Oakley Cluster with up to 32 GPU nodes where each node
has two Fermi GPU accelerators.
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Cluster Specs A Oakley
CPU Processor Intel Xeon E5630 Intel Xeon X5650
CPU Clock 2.53GHz 2.66GHz
Node Type two 4-core sockets two 6-core sockets
CPU Memory 12 GB 46 GB
GPU Processor NVIDIA Tesla C2050 NVIDIA Tesla M2070
GPUs per Node 1 2
GPU Memory 3 GB 6 GB
Compilers gcc 4.4.7 gcc 4.4.7
MPI Library MVAPICH2 2.0b MVAPICH2 2.0b
Interconnect Mellanox IB QDR Mellanox IB QDR

Table III: Experimental Environment

B. Evaluation with DDTBench Micro Application
In this section we evaluate overall HAND design by

comparing with direct transfer (DT) and transformation
(TR). DT uses MPI Send/Recv on CPUs and explicitly
moves data between CPU memory and GPU memory. We
normalize the latency of HAND to 1 and calculate the
relative latency for other designs. We choose five representa-
tive micro application kernels from DDTBench Suite [14],
as summarized in Table I. DDTBench is a suite of micro
applications that characterizes parallel scientific applications
from different fields of science. By performing a ping-pong
benchmark, the DDTBench illustrates the usage of datatype
in real applications. We modify these DDTBench micro
applications by allocating the data on device memory and
use them directly in MPI communication routines. Since
many communication patterns and datatypes are widely
used in GPGPU applications, our evaluation provides good
perspective for real GPGPU applications as well.

To verify the benefit of HAND, we evaluate both
one layer and multi-layer datatypes and combine the re-
sults in Figure 12. In general, HAND achieves equal
or better performance than other schemes. Compared to
DT, without additional explicit data movement between
CPU and GPU, HAND achieves an average of 66%,
99%, 97%, 43% and 97% performance improvement for
NAS MG y, SPECFEM3D oc, WRF y sa, MILC su3 zd
and SPECFEM3D cm, respectively.

Compared to TR, HAND performs equally on WRF y sa
and MILC su3 zd and gains an average of 18% improve-
ment on NAS MG y. In the cases of SPECFEM3D oc
and SPECFEM3D cm, TR degrades to DT. This is largely
caused by the non-uniform displacements of the arbitrary
datatypes. In addition, in case of NAS MG y, we use 2D
cudaMemcpy for DT, yet still delivers worse performance.
This is also true for stencil2D in Scalable Heterogeneous
Computing benchmark (SHOC) [15], in which the east and
west data are non-contiguous and use 2D strided cudaMem-
cpy to explicit move the data. Therefore, HAND can improve
the performance of stencil2D in SHOC as well.

C. Evaluation with Stencil Computations
Besides the modified DDTBench suite, we choose two

stencil computation kernels to further evaluate the opti-
mization for targeted subarray kernels. First, we evaluate
Stencil2D communication kernel on 4 GPUs with two cases:

fixed size of 2D array with increasing boundary size, and
fixed boundary size of 1 with increasing total size of 2D
array. As shown in Figure 13, both transformation (TR)
and HAND achieve significant performance improvement
compared to direct transfer (DT). Furthermore, the HAND
achieves up to 70% improvement compared to TR.

Then, we evaluate the stencil3D computation kernel by
varying the size on each dimension of the 3D subarray.
As shown in Figures 14(a), 14(b) and 14(c), compared to
transformation (TR), HAND gains up to 15%, 15% and 22%
reduction in latency with various dimensional sizes, respec-
tively. This is largely due to the reverse thread block map-
ping and automatic tuning based on different datatype sizes.
Also, both designs achieve more than 86% latency reduction
compared to application level packing/unpacking routines
(DT). This is because Stencil3D kernel uses MPI Isend
and MPI Irecv asynchronous functions and HAND has
been fully incorporated into the pipeline design [7], which
pipelines the packing and unpacking with asynchronous data
chunk communication.

D. Evaluation with N-Body Application
In this section, we evaluate large scale N-Body application

proposed in section V. Figure 15(a) and Figure 15(b) show
the total execution time of N-Body simulation with 200
iterations, in terms of simple particle and complex particle,
respectively. We fix the number of particles to 131,072
(128K) on each GPU node, and evaluate the weak scalability
of two cases among direct transfer (DT), transformation
(TR) and HAND. For simple particles using struct datatype,
both TR and HAND outperform DT, and on average, HAND
exhibits 2% benefit compared to TR. However, due to large
number of kernel invocations, TR shows poor performance
for complex particle using indexed datatype with non-
uniform stride. In contrast, HAND exhibits up to 55%
performance improvement compared to DT.

VII. RELATED WORK

In HPC area, efficient processing and use of MPI derived
datatypes have been explored by many researchers [16–18].
Making MPI libraries GPU-aware and extending MPI to
support communication on GPU clusters have also been in
focus for several years [6, 7]. Some researchers have also
explored optimization of MPI datatypes processing when
data is stored on GPUs. The Physis approach proposed by
Maruyama et. al [19] defines an implicit parallel program-
ming model specifically for stencil computations on GPU
clusters. Similarly, Bianco et. al. [20] proposes a generic li-
brary for stencil computations by optimizing targeted nested
vector and subarray datatype packing and unpacking routines
at the application level. cudaMPI and glMPI proposed by
Lawlor et. al [21] define MPI-like message passing interface
to support both point-to-point and collective operations on
contiguous and non-contiguous data. However, these work
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Figure 12: Evaluation of DDTBench Micro-Application Kernels
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Figure 13: Evaluation of Stencil2D Computation Kernel
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Figure 14: Evaluation of Stencil3D Application Kernel

focus on particular application scenarios and do not cover
the wide range of non-contiguous data transfer patterns
found in applications. Jenkins et. al. proposes a tree-based
representation that enables efficient storage and access of
datatype information on GPUs. They also propose a paral-
leled datatype packing algorithm [10]. Wang et al. proposes
transformation approach, which converts every datatype into
a group of vectors and uses kernels to parallelize the packing
of each of these vectors [9]. However, both approaches incur

inefficiency in handling different shapes of non-contiguous
data as explained in Section I.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a novel HAND framework to ef-
ficiently pack and unpack non-contiguous data on GPUs.
With the new host bypass design, the HAND framework can
handle irregular non-contiguous datatypes more efficiently.
Also, the HAND framework seamlessly integrates other
schemes so as to exhibit equal or better performance. The
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Figure 15: Evaluation of N-Body Particles Simulation

experimental results exhibit sustained scalability of HAND.
Our experimental results across two platforms with different
GPU configurations validate the portability and stability of
HAND. In the future, we plan to explore HAND with new
GPU architectures (e.g. Kepler GPUs) and AMD GPUs
with OpenCL programming model. Support for the HAND
framework will be available in future MVAPICH2 releases.
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