
PostMan: Rapidly Mitigating Bursty Traffic via
On-Demand Offloading of Packet Processing

Yipei Niu, Panpan Jin, Jian Guo, Yikai Xiao, Rong Shi, Fangming Liu , Senior Member, IEEE,

Chen Qian, Senior Member, IEEE, and Yang Wang

Abstract—Unexpected bursty traffic brought by certain sudden events, such as news in the spotlight on a social network or discounted

items on sale, can cause severe load imbalance in backend services. Migrating hot data—the standard approach to achieve load

balance—meets a challenge when handling such unexpected load imbalance, because migrating data will slow down the server that is

already under heavy pressure. This article proposes PostMan, an alternative approach to rapidly mitigate load imbalance for services

processing small requests. Motivated by the observation that processing large packets incurs far less CPU overhead than processing

small ones, PostMan deploys a number of middleboxes called helpers to assemble small packets into large ones for the heavily-loaded

server. This approach essentially offloads the overhead of packet processing from the heavily-loaded server to helpers. To minimize

the overhead, PostMan activates helpers on demand, only when bursty traffic is detected. The heavily-loaded server determines when

clients connect/disconnect to/from helpers based on the real-time load statistics. To tolerate helper failures, PostMan can migrate

connections across helpers and can ensure packet ordering despite such migration. Driven by real-world workloads, our evaluation

shows that, with the help of PostMan, a Memcached server can mitigate bursty traffic within hundreds of milliseconds, while migrating

data takes tens of seconds and increases the latency during migration.

Index Terms—Bursty traffic, packet offloading, packet batching, high-performance network stack

Ç

1 INTRODUCTION

MODERN distributed systems usually scale by parti-
tioning data and assigning these partitions to differ-

ent servers [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. In
such an architecture, some servers may experience a
higher load than others, creating a classic load imbalance
problem [4], [11].

Many works have studied how to mitigate load imbalance
by better data partitioning and placement strategies [1], [4], [5],
[7], [8], [10], [11], which work well for long-term and stable
load imbalance. For load imbalance caused by unexpected
bursty traffic, however, these approaches meet an additional
challenge: to adapt to such unexpected load imbalance, we
need to adjust the data partitioning or placement strategies
online bymigrating hot data to less busy servers, butmigrating
hot data will inevitably slow down the server hosting hot
data—this is the server we want to accelerate. This means to

alleviate load imbalance, these approacheswill first exacerbate
load imbalance for awhile, which is a risk that production sys-
tems are often unwilling to afford. For example, Amazon
Dynamo runs data migration at the lowest priority and finds
that during a busy shopping season, data migration can take
almost a day to complete [11]. Unfortunately, unexpected
bursty traffic is frequently reported in practice, for various rea-
sons such as a sudden event drawing public attention on a
social network [12] or a hot item on sale [13], [14], [15], [16].

This paper proposes PostMan1, an alternative approach to
mitigate load imbalance for services that are processing small
packets, which usually incur a high overhead for packet proc-
essing. Typical examples of such services include key-value
stores and metadata servers. For example, Facebook reported
that in its caching layer, most key sizes are under 40 bytes and
the median value size is 135 bytes [17], [18]; metadata servers,
such as NameNode in HDFS [2], are usually processing pack-
ets with a size of tens to a few hundred bytes.

The key idea of PostMan is motivated by the observation
that there is a significant gap between the overhead of process-
ing small and large packets because the networking stack has
to pay a constant overhead for each packet, such as interrupt
handling and system call. For example, when processing 64B
packets on 10Gb Ethernet, Linux can achieve a throughput of
about 1Gbps with a CPU utilization of 800 percent (8 cores
with 8K concurrent connections) [19]. On the contrary, when
processing 8KB packets with a CPU utilization of 800 percent
(8 cores with 8K concurrent connections), Linux can achieve a
throughput of about 10Gbps [19]. Newer networking stacks,

� Yipei Niu, Panpan Jin, Jian Guo, Yikai Xiao, and Fangming Liu are with
the National Engineering Research Center for BigData Technology and Sys-
tem, Services Computing Technology and System Laboratory, Cluster and
Grid Computing Laboratory, School of Computer Science and Technology,
Huazhong University of Science and Technology,Wuhan 430074, China.
E-mail: {niuypei, panpanjin, guojian, fierralin, fmliu}@hust.edu.cn.

� Rong Shi and Yang Wang are with the Department of Computer Science
and Engineering, Ohio State University, Columbus, OH 43210 USA.
E-mail: {shi.268, wang.7564}@osu.edu.

� Chen Qian is with the Department of Computer Science and Engineering,
University of California Santa Cruz, Santa Cruz, CA 95064 USA.
E-mail: cqian12@ucsc.edu.

Manuscript received 7 Oct. 2020; revised 11 May 2021; accepted 15 June 2021.
Date of publication 24 June 2021; date of current version 22 July 2021.
(Corresponding author: Fangming Liu.)
Recommended for acceptance by J. Zhan.
Digital Object Identifier no. 10.1109/TPDS.2021.3092266

1. The source code of PostMan is released on Gitee: https://gitee.
com/opencloudnext/PostMan.

374 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0002-8570-1345
https://orcid.org/0000-0002-9721-4923
https://orcid.org/0000-0002-9721-4923
https://orcid.org/0000-0002-9721-4923
https://orcid.org/0000-0002-9721-4923
https://orcid.org/0000-0002-9721-4923
mailto:niuypei@hust.edu.cn
mailto:panpanjin@hust.edu.cn
mailto:guojian@hust.edu.cn
mailto:fierralin@hust.edu.cn
mailto:fmliu@hust.edu.cn
mailto:shi.268@osu.edu
mailto:wang.7564@osu.edu
mailto:cqian12@ucsc.edu
https://gitee.com/opencloudnext/PostMan
https://gitee.com/opencloudnext/PostMan

such as mTCP [19] and IX [20], have mitigated this problem,
but first, the gap still exists, though smaller, and second, a
wide deployment of a new networking stack requires a big
effort, because the networking stack is a critical component of
thewhole system,whichmay affect all other components.

Motivated by this observation, PostMan incorporates
several middleboxes called helpers, which batch small pack-
ets for the server experiencing bursty traffic (called “helpee”
in the rest of the paper), so that the helpee can enjoy the low
overhead of processing large packets. This approach essen-
tially offloads the constant overhead associated with each
small packet from the helpee to the helpers, so as to improve
the throughput of helpees. Hence, the overloaded helpees
can enjoy the performance gain despite the additional data
transfer via helpers, especially when the load so high that
the bandwidth of helpees is saturated.

This approach brings several benefits: first, PostMan does
not require time-consuming data migration. Instead, it only
requires the clients to re-connect to the helpers, which can be
completed within hundreds of milliseconds as shown in our
evaluation. Second, PostMan can incrementally deploy new
networking stacks on helpers and allow other servers to still
use traditional stacks. Third, PostMan can use multiple help-
ers to accelerate one helpee, which means its capacity is not
limited by the power of a single machine. Finally, offloading
batching opens up new opportunities for further optimiza-
tion: we observe that packets to the same destination have sig-
nificant redundancy in their packet headers (e.g., same
destination IP and port). By removing such redundancy, Post-
Man can achieve a considerable reduction in bandwidth con-
sumption at the helpee.

Of course, PostMan has its limitation under specific sce-
narios: if load imbalance lasts long, PostMan will be more
expensive than data migration because incorporating help-
ers incurs extra server resource. Therefore, we expect Post-
Man and data migration to be complementary to mitigate
load imbalance: for unexpected bursty traffic, we can acti-
vate PostMan to accelerate the heavily-loaded server first; if
such burst continues to happen regularly, we can migrate
data since the machine is less busy with the acceleration of
PostMan; after data migration is completed, we can disable
PostMan to minimize cost. As a result, the helpers would
not be active for a long time. Moreover, since PostMan only
targets the servers experiencing bursty traffic and can effi-
ciently process packets, we can use a few helpers for a large
cluster to further reduce cost.

The idea of batching small requests to improve perfor-
mance is certainly not novel. The key novelty of PostMan
lies in its observation that, for the purpose of mitigating unex-
pected load imbalance, batching should be performed remotely and
on demand: remote batching allows PostMan to accelerate a
heavily-loaded server with the help of resource from other
servers; on-demand batching allows PostMan to minimize
the overhead by only helping those servers experiencing
bursty traffic. To realize these ideas, PostMan includes four
main features:

� We provide an efficient implementation of the help-
ers. By utilizing state-of-the-art techniques like
DPDK and efficiently parallelizing work among mul-
tiple cores, a single helper node can assemble and

disassemble around 9.6 million small packets per
second. By removing redundancy in headers, Post-
Man can reduce packet header size from 46 bytes to
7 bytes: for 64-byte packets, this means about 50 per-
cent higher bandwidth utilization at the helpee.

� To ensure packet ordering despite migrating connec-
tions across helpee and helpers and despite helper
failures, PostMan keeps helpers stateless by maintain-
ing sufficient information at the clients and servers to
detect out-of-order packets and re-transmit packets
when necessary. While we find many applications
already implement similar functionalities, we pro-
vide a library to those which do not.

� To minimize the overhead brought by helpers, the
overloaded server determines when clients con-
nect/disconnect to/from helper nodes based on its
real-time load statistics. Meanwhile, all the avail-
able helper nodes are automatically discovered and
registered by Consul, enabling clients to select the
idlest one from the available helpers to achieve
load balancing.

� Wepresent an adaptive batchingmechanism to decide
how many packets to assemble. It can increase the
batch size for higher throughput under heavy traffic
and decrease the batch size for lower latency under
light traffic.

Our evaluation on Memcached and Paxos shows that,
with the help of PostMan, the service can mitigate bursty
traffic within hundreds of milliseconds, while migrating
data can take tens of seconds. Further investigation shows
that this is because PostMan can improve the goodput of
Memcached and Paxos by 3:3� and 2:8� , respectively.

This work significantly extends the previous work [21].
We re-design the mechanism of enabling/disabling Post-
Man, where the overloaded servers determine when clients
connect/disconnect to/from helper nodes based on load
statistics. Furthermore, we add a new feature for re-connect-
ing and load balancing, which automatically discovers and
registers all the active helper nodes. The servers send the
latest list of active helper nodes to clients, when the clients
require to re-connect to helpers or migrate connections.
Then the clients inquire about the load statistics of the active
helper nodes and adopt the roulette wheel selection algo-
rithm to choose a helper to re-connect. In the previous
work, the available helper nodes are hard-coded and a
greedy load balancing strategy is employed. These exten-
sions improve the flexibility of PostMan, achieving on-
demand packet offloading and efficient utilization of help-
ers, which further minimizes the cost of helpers. Finally,
experiments are added to evaluate the effectiveness of the
extensions. Meanwhile, when evaluating the effectiveness
of PostMan compared to data migration, we re-conduct a
series of experiments with real-world traces reported by
Facebook.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the related work. We introduce the overall
architecture of PostMan in Section 3. In Section 4, we dem-
onstrate how PostMan batches small packets. We discuss
the detailed implementation of PostMan in Section 5. In Sec-
tion 6, we present the results of evaluating PostMan. Finally,
Section 7 concludes the paper.

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 375

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

2 RELATED WORK

DataMigration. Load balancing is a classic topic of distributed
systems. Most existing systems use an adaptive approach to
achieve load balancing: they can monitor the load of each
machine and place new data on less busy machines [1], [4],
[5], [7], [8], [10], [11], [22]. To mitigate load imbalance, these
approaches have to split, merge, and migrate existing data
partitions, which works well for long-term and stable load
imbalance. Despite the support from such mechanisms, how
to mitigate load imbalance caused by unexpected bursty traf-
fic is still a challenge: since migrating data online will put
more pressure on the machine that is already heavily loaded,
the administrator is facing a painful trade-off between the
short-term loss and the long-term gain of migrating hot data.
PostMan can rapidlymitigate load imbalancewithoutmigrat-
ing hot data online. Moreover, PostMan relieves overload
of helpees, offering sufficient time and resource for data
migration.

An alternative solution is to cache hot data locally to
reduce remote access to backend servers. However, data of
the services (e.g., NameNode in HDFS and Memcached)
that PostMan accelerates is frequently updated, so caching
the data locally may incur the significant overhead of main-
taining data consistency for large-scale clients.

Batching Small Packets. A classic method to improve the
performance of processing small packets is to batch them to
amortize the constant overhead across multiple packets. For
example, TCP has the Nagle’s algorithm to batch small
packets. Modern NICs often use Generic Receive Offload
(GRO) to re-segment the received packets. However, the
power of such per-connection batching mechanisms is lim-
ited by the number of outstanding packets per client. In
many cases, a client may have to wait for replies before it
can issue new ones, and thus the number of packets that
can be batched is limited.

Comet [23] batches the received data before batched
stream processing at the server side. KV-direct [24] first
batches multiple KV operations at the client side to increase
bandwidth utilization, and then at the server side, it batches
memory accesses by clustering computation together.

A few systems incorporate several nodes to batch packets
for other nodes. For example, Facebook has built mcrouter
to batch packets for its Memcached service [18]. NetAgg
aggregates traffic along network traffics for applications fol-
lowing a partition/aggregation pattern [25]. MPI has a col-
lective I/O mode to batch I/Os from multiple processes
before writing them to disks [26].

Compared to these systems, PostMan uses batching for a
different goal—mitigating unexpected load imbalance. To
achieve this goal, PostMan offloads the overhead of batching
from the heavily-loaded server to others and only performs
such offloading when a server is under heavy pressure. These
techniques allow PostMan to use extra resources to accelerate
a server experiencing bursty traffic and minimize the over-
headwhen there is no such bursty traffic.

Efficient Network Stack. There is a continuous effort to
develop more efficient network stacks for high-speed net-
works: mTCP [19] moves the TCP stack to the user space to
reduce system call overhead and further improves perfor-
mance by batching I/Os; DPDK [27] asks a network card to

transfer data to the user space directly and applies a series of
optimizations like CPU affinity, huge page, and polling to get
close to bare-metal speed; IX [20] and Arrakis [28] design new
operating systems to separate data transfer and access control
to achieve both high speed and good protection; Netmap [29]
improves networking performance by reducingmemory allo-
cation, system call, and data copy overhead.

Although these works have significantly improved the
network performance, the performance gap between small
and large packets persists (Table 1). Taking IX [20] as an
example, it can achieve almost 10Gbps bandwidth even
with 64-byte packets, which is significantly better than
Linux. However, first, it needs to consume a considerable
amount of CPU resources (see Section 6.2); second, there is
still a gap between goodput (bandwidth used for payload)
and throughput, because packet headers consume a large
portion of bandwidth. Such per-packet overhead exists in
RDMA systems as well [30].

Many works [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40] exploit the high-performance hardware to improve
networking performance. These devices (e.g., smartNIC,
RDMA, and NVMe) are not widely available yet. Further-
more, due to limited programmability and necessary adap-
tation of software stacks, it is hard to deploy the devices
quickly. PostMan is a software solution, which can be
quickly deployed and rapidly mitigate load imbalance with
a minimum of cost.

Furthermore, the deployment of new networking stacks
is usually a slow procedure, because networking service is
critical and production systems are unwilling to pay any
risk. On the other hand, PostMan allows administrators to
incrementally deploy such new techniques on a few servers
to accelerate a large number of legacy servers.

Others. The architecture of PostMan is similar to existing
proxies (e.g., NGINX [41] and mcrouter [18]), which are also
deployed between clients and servers. The key difference is
that PostMan dynamically enables and disables helpers
according to the load of servers.

The design of PostMan may seem to be similar to that of
the split TCP approach [42], [43], [44], which also deploys
helper nodes in the network. However, their goals and
internal mechanisms are different: split TCP is designed to
reduce latency in a network with large round-trip delays,
by letting helper nodes send acks to the sender directly;
PostMan, on the other hand, is designed to improve the
throughput of transferring small packets by letting helper
nodes batch small packets. For the purpose of tolerating
helper failures, PostMan’s helpers actually delay sending
acks to the sender, until the helpers receive acks from the
helpee (see Section 4.2).

TABLE 1
Goodput of Processing Big and Small Packets

64 bytes 64KB

10Gb Linux 2.4Gpbs 9.1Gbps

10Gb IX [20] 5.0Gbps 9Gbps

Goodput excludes bandwidth used for headers.

376 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

3 OVERVIEW OF POSTMAN

In this paper, we propose PostMan, a distributed service to
offload the overhead of packet processing from a heavily-
loaded server (called helpee in the rest of this paper). Moti-
vated by the observation that processing large packets
incurs far less overhead than processing small packets, Post-
Man deploys a number of helper nodes in the network to
assemble small packets for the helpee. By doing so, PostMan
essentially offloads the constant overhead associated with
each packet from a helpee to the helpers. With the help of
PostMan, a helpee node only needs to process large packets.

Fig. 1 shows the organization of PostMan. The core of
PostMan consists of: 1) a number of helper nodes that
assemble small packets for the helpees, and 2) a PostMan
library that provides the applications with the functionali-
ties of packet re-direction, assembly, and disassembly. Fur-
thermore, PostMan library provides functions to detect out-
of-order packets and re-transmit packets when necessary.
These functions allow PostMan to achieve fault tolerance
and load balance by migrating connections across helpers.

As shown in Fig. 1, in a large scale distributed system, Post-
Manwill only activate helpers to accelerate servers experienc-
ing unexpectedly high load, which causes their latency to be
higher than their service level agreement (SLA). For servers
with normal load, their clients should communicate with the
servers directly. Accelerating these normal servers with Post-
Man, though possible, is not cost-effective. Essentially Post-
Man offloads overhead instead of reducing overhead: in fact,
PostMan increases overall overhead because it needs to per-
form additional work to assemble and disassemble packets.
Therefore, PostMan tries to keep such overhead low by only
helping nodeswith trouble.

4 POSTMAN DESIGN

PostMan is designed for the scenario that, suddenly, a large
number of clients are sending small requests to a few serv-
ers (i.e., helpees). PostMan deploys helper nodes to assem-
ble the clients’ small packets to the helpee and disassemble
the helpee’s small packets to the clients so that the helpee
only needs to process large packets. To differentiate these
two directions, we use “request” to refer to a packet from a
client to a server and “reply” to refer to a packet from a
server to a client.

In the rest of this section, we discuss how to assemble
and disassemble packets efficiently at helper nodes, what
APIs PostMan provides and how to apply them, and how to
adaptively balance throughput and latency.

4.1 Assembling and Disassembling Packets

Format of Assembled Packets. For small packets, the size of
their headers (at least 20 bytes for IP and TCP header
respectively, 6 bytes for MAC header) is comparable to the
size of their payloads, and that is one major reason why net-
work throughput cannot reach bare-metal bandwidth, even
with new techniques like DPDK. However, when consider-
ing packets to the same destination, their headers contain a
significant amount of redundancy: packet assembly at the
helper nodes can remove such redundancy and further
improve throughput at the helpee. For example, since pack-
ets to be assembled have the same destination, PostMan
only needs to maintain one copy of destination IP and port
in the assembled packet. PostMan can shrink source IP as
well for small to medium clusters by maintaining a map-
ping from IP to a shorter identification number at each node
(e.g., 2 bytes for clusters with less than 64K machines).
Moreover, since the connections from the clients to the
helper and the connections from the helper to the helpee are
separate, they perform congestion control independently,
which means the helper can simply discard related informa-
tion in the original packets.

As shown in Fig. 2, a helper node can assemble packets
from multiple connections, and when doing so, the helper
discards their TCP/IP/MAC headers and only sends their
payloads, together with one TCP/IP/MAC header for all
payloads, so that the helpee does not need to pay the header
overhead for each packet. However, to ensure that the
helpee can correctly disassemble packets, the helper node
must encapsulate necessary information for each payload,
which is called a “PostMan header”.

A PostMan header is a 3-tuple structure (Table 2): 1) an
identification code to identify the packet type, 2) a length field
to record the length of one payload, and 3) the source IP and
port of the payload to locate the sender. A packet can have
one of the following three types: 1) request, i.e., a packet sent
by a client, 2) reply, i.e., a packet sent by a server, and 3) con-
nect, i.e., a command to create a connection (see Section 4.2).
As a result, compared to a TCP/IP/MAC header that takes at
least 46 bytes, a PostMan header only takes 7 bytes: this is a
significant savingwhen processing small packets.

Workflow of Assembling and Disassembling Packets. When
assembling packets from the clients to the helpee, a helper
node fetches all pending packets in its network stack, repla-
ces their TCP/IP/MAC headers with corresponding Post-
Man headers, concatenates all of them, and adds its own

Fig. 1. Overview of PostMan.

Fig. 2. PostMan assembles packets from different clients by using a
short header for each payload.

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 377

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

TCP/IP/MAC header. By doing so, both the PostMan head-
ers and the payloads of the original small packets become
the payload of the assembled packet.

In the opposite direction, when a helpee sends replies to
clients, it will first send the assembled reply to the helper
node, which will disassemble the replies and dispatch them
to the clients. The format of the assembled reply is similar
to that in Fig. 2.

Each helper node can create multiple connections to the
helpee, so that one helpee can utilize multiple cores and
threads to receive packets concurrently.

If one helper node is accelerating multiple overloaded
servers, packets will be sent from clients to different desti-
nations through helpers. For each helper node, the small
packets, which are sent to the same destination (i.e., one of
the overloaded servers), will be assembled into large pack-
ets. For packets sent to different destinations, PostMan does
not assemble them at all. Hence, if the number of packets
sent to each server is too small to assemble, PostMan fails to
batch any packet. However, under such a scenario, the load
is so low that PostMan has already been disabled.

4.2 PostMan Library

A traditional networking library provides a number of
APIs, such as bind, connect, send, and recv to the application.
As shown in Fig. 3, PostMan library provides a few addi-
tional ones: pm_connect allows a client to create a connection
to a helper node; compose/decompose assemble/disassemble
packets as described in Section 4.1; get_info allows the appli-
cation to retrieve connection information. A developer
should use these additional APIs together with traditional
APIs to build the application. Next, we show how these
functions work and how to modify an application to utilize
these functions.

Establish Connections. A server should bind to a port and
wait for new connections, like using a traditional network
library. Of course here a server may accept new connections
from the helper nodes. A client can use the traditional net-
work library when the latency is low and switch to PostMan
when the latency is high by calling pm_connect. pm_connect
will choose a helper (see Section 5.2) and connect to the
helper. Then it sends a special “connect” packet to the
helper node. This packet contains the destination IP and
port of the helpee and the source IP and port of the client.
The helper node will connect to the corresponding helpee, if
there is no connection yet, and forward the “connect”
packet. At the same time, the helper creates a mapping from
the client’s socket to the server’s socket. When the server
application reads data from a helper connection, it should
call decompose, which will identify the special “connect”
packet and notify the server application that a new client

tries to connect. Then the server application calls pm_accept
to create a fake socket with a fake fd for the client connec-
tion and maps it to the helper connection using the source
IP and port information. Finally, the server library will
return a “success” packet to the client through the helper
node, telling the application pm_connect succeeds.

Transfer Data. When PostMan is activated, a client should
send packets through the connection to the helper. The
helper node assembles multiple small packets and sends
the assembled packet to the server. When the server appli-
cation reads a packet, it calls decompose to disassemble the
packet into small packets. For each small packet, the library
on the server side finds the corresponding fake fd according
to the source IP and port information in the PostMan
header. Then the small packets are delivered to the server
application and processed as if they were from real sockets.
In the opposite direction, when a server sends replies, for
each helper connection, it should buffer multiple replies
from the corresponding fake sockets and assemble them by
calling compose. Then it can send the assembled reply to the
connection to the helper. The helper node disassembles the
replies and sends them to the corresponding clients based
on the PostMan headers. The clients can read packets using
a recv or read system call.

Ensure Packet Ordering. Applications often need to
ensure packets are not lost, duplicated, or re-ordered.
Since PostMan uses TCP connections between the clients
and the helper nodes, and between the helper nodes and
the helpees, these properties hold when there is no migra-
tion of connections. However, PostMan may migrate con-
nections for several reasons: 1) If a client is connecting
directly to a server and the server finds the throughput is
high, it will notify the client of calling pm_connect to
migrate its connection to a helper; 2) When a helper is
heavily loaded, PostMan will instruct its clients to migrate
to other helpers; 3) If a helper fails, its clients have to
migrate to other helpers and recover the connections. As a
result, PostMan needs additional mechanisms to ensure
packet ordering despite such connection migration. For
the first two cases, where migration is executed gracefully,
a simple solution is to ask a client to wait for replies of all
its pending requests before migrating its connection. For
the helper failure case, however, this problem becomes
challenging, because a client is uncertain about which
packets are delivered.

In distributed systems, two approaches are widely used
to achieve fault tolerance: one is to replicate the nodes that
can be faulty, and the other is to re-direct requests to
another node. Replication can fully hide faults from upper

TABLE 2
The Format of PostMan Header

Type Length (bytes) Description

ID code 1 Message type
Len 2 Message length
Sender 2* + 2 Src IP/port

(*: for a cluster with less than 64K machines, the helper extracts the lower 16
bits from a source IP and then hashes them into a 2-byte identifier)

Fig. 3. Workflow of the PostMan library.

378 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

layers, at the cost of increased overhead. The re-direction
approach has lower overhead, but it requires the faulty
node to be stateless, i.e., it does not have any important state
that will affect execution.

We use the re-direction approach because of its low over-
head. To ensure packet ordering even if the system loses all
information on the faulty helper node, PostMan needs to
maintain sufficient information at the senders and receivers.
Its basic idea is similar to that of TCP: a sender should
buffer a packet until it gets acknowledged and re-send a
packet if it does not get acknowledgment in a given amount
of time; a receiver should check the sequence numbers in
the packets to ensure they are in order. Unlike TCP that
implements this mechanism in one connection, PostMan
needs to implement this mechanism across different con-
nections, because when a helper fails, the client needs to re-
connect to a new helper.

On one hand, we observe that many applications have
already implemented such a mechanism. The fundamental
reason they choose to do so instead of relying on TCP is that
they are designed to tolerate machine failures: in this case, a
node needs to connect to other nodes and face the same
problem as PostMan. For these systems, PostMan can utilize
the application’s mechanism directly.

On the other hand, for applications that do not have this
mechanism, PostMan provides a general solution. To ensure
packets will not be lost, PostMan library at senders2 will
buffer packets until it receives acks from receivers, as the TCP
protocol does. Since the underlying layer maintains separate
TCP connections between the senders and the helper nodes,
and between the helper nodes and the receivers, the key to
avoid data loss is to coordinate the underlying ack mecha-
nisms: after receiving a packet from a sender, the helper node
should not send the ack to the sender until it has got ack from
the receiver.Wemodify the TCP implementation at the helper
nodes to realize this mechanism. Since Postman targets small
packets, delaying acks and sending them in burst should have
little impact on congestion control.

When a helper fails, a sender may not receive acks for its
outgoing packets, so it may decide to reconnect to another
helper and retransmit those packets through the new helper.
In this case, since the receivermay have already received these
packets (acksmay be lost due to helper failure), these packets
may be duplicated or re-ordered. To prevent such abnormal-
ity, PostMan libraries at the sender and the receiver maintain
additional information to detect duplicate or out-of-order
packets.

To be specific, the library will keep track of how many
bytes are already sent and received on each connection; for
each buffered outgoing packet, the library will record its off-
set in the stream. As shown in Fig. 4, when a helper node
fails, the client library, which is the sender in this example,
will connect to another helper node and sends a “reconnect”
message to the server through the new helper node, which
contains the number of sent and received bytes at the client
side. When the server library receives this command, it will

first stop receiving packets from the old connection and
then respond with the number of sent and received bytes at
the server side. By exchanging the number of sent and
received bytes and comparing them to the offsets of buff-
ered packets, both sides can determine which packets
should be re-transferred.

Further Optimization. So far we assume an application
server needs to disassemble packets before processing them.
However, this may not be necessary for some applications. A
typical example is a server that needs to forward or broadcast
packets (e.g., proxy server, leader replica in replication proto-
cols, etc). For such servers, since they do not care about the
content of payload, they can forward or broadcast the assem-
bled packets directly, instead of disassembling them first.
Note that when sending assembled packets, the application
should not use PostMan, since these packets are large.

Using PostMan Library. To apply PostMan to existing appli-
cations, the developer needs to modify its code: at the client
side, the client should call pm_connect to switch to PostMan
when it observes a high latency and switch back to traditional
sockets when the latency drops back to normal; at the server
side, the server should call decomposewhen it receives a packet
from a helper (get_info can tell whether a connection is from a
client or from a helper). The server assembles a number of
replies by calling composewhen it sends packets through help-
ers. If the application needs PostMan’s help to ensure packet
ordering, it should notify PostMan when a packet is sent or
received, so that PostMan can buffer and release packets and
update correspondingmetadata.

It is possible to hide all the mechanisms mentioned above
in the library and provide the applications with an illusion
that they are using direct connections between clients and
servers. We have implemented a library to achieve such
transparency. However, we find it can incur up to 50 per-
cent overhead for additional operations like memory copy,
synchronization, context switch, etc. Considering the main
goal of this work is to improve the performance of the
heavily-loaded server, we decide to give up transparency
for better performance.

4.3 Adaptive Batching

Batching can affect system latency in two opposite ways: on
one hand, to assemble packets, a helper node must wait for

Fig. 4. Maintaining a virtual connection by redirecting and re-sending
requests when a helper node fails.

2. Note that senders and receivers are different concepts compared
to clients and servers: when a server is receiving packets from a client,
it is the receiver; when a server is sending a reply to a client, it is the
sender.

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 379

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

a certain amount of time to accumulate enough small pack-
ets, which will increase the latency of the system. On the
other hand, according to queuing theory, when the load is
close to or higher than the system’s capacity, queuing delay
will become a dominant factor for latency. Since batching
can improve a system’s capacity, it can reduce queuing
delay and thus can reduce latency.

PostMan partially avoids such trade-off by only activat-
ing helpers for heavily-loaded servers. In addition, PostMan
incorporates an adaptive batching algorithm to balance
latency and throughput when helpers are enabled. Like
many systems using batching, PostMan defines a maximum
batch interval (T) and a preferred batch size (S): if the
helper has waited for T (condition 1) or if its assembled
packet has reached size S (condition 2), the helper will send
the assembled packet to the helpee. Then the question turns
to how to set T and S: large T and S lead to unnecessary
waiting when traffic load is light; small T and S reduce the
chance of assembling packets when traffic load is heavy.

Algorithm 1. Adaptive Batching Algorithm

Input: the size (s) and waiting time (t) of last batch
1: procedure Update S and T
2: Sl 0:75S
3: Su 1:25S
4: if ðs < Sl _ s > SuÞ ^ ðs � 1500Þ then
5: S s
6: end if
7: Tl 0:5T
8: Tu 1:5T
9: if ðt < Tl _ t > TuÞ ^ ðt � 10msÞ then
10: T t
11: end if
12: end procedure

To address this problem, PostMan uses an adaptive batch
size and interval to increase throughput under heavy loads
and decrease latency under light loads, as shown in Algo-
rithm 1. PostMan records the batch size (s) and waiting time
(t) of the last batch: if s is significantly different from S or t
is significantly different from t, PostMan updates S and T
accordingly. Furthermore, it sets a lower bound of S and T
to ensure efficiency. Note that although T is the maximum
batch interval, the actual interval t can be much larger than
T when the helper does not receive any packets for a long
time; s can be much larger than S as well when the helper
receives many packets at the same time.

This algorithm has a few parameters: we set the lower
bound of S to be 1500 because that is the MTU size; the
lower bound of T should be set according to the SLA
requirement; we set other parameters based on empirical
experiments.

5 IMPLEMENTATION

In this section, we present how to achieve efficiency and
scalability for PostMan.

5.1 Efficient Helper

Fast I/O andUser-Level Stack.Each helper node needs to assem-
ble requests from the clients, and disassemble the replies from

the servers. To efficiently process the small packets on the
helper nodes, we implement PostMan upon DPDK [27],
which is a set of libraries and drivers for fast packet process-
ing. DPDK minimizes the overhead of packet processing by
transferring packets from NICs directly to user space pro-
grams and thus can achieve a throughput of hundreds of mil-
lions packets per second. Upon DPDK, we use mTCP [45] to
handle TCP protocol and connections. DPDK provides a poll
mode I/Omodel, which can transfer a batch of packets in one
I/O operation. This I/O model not only avoids the overhead
caused by frequent interrupts in per-packet based processing
in Linux, but also naturally fits the assembling requirements
of our helper nodes: a helper can simply add all the payload
data from these packets to the assembling buffer, instead of
performing the read operation several times.

In-Stack Processing. Since the assembling logic only involves
simple operations for request/response headers, PostMan
implements these operations in the network layer to accelerate
the identification and pre-processing of the original packets.
PostMan uses direct data exchange between the server and
the client streams so as to avoid redundant memory copy and
improve the performance of fragmented data operation. By
implementing everything in the network stack, PostMan elim-
inates the interaction and context switching between the
applications and the stack to further improve assembling effi-
ciency. All necessary assembling and disassembling opera-
tions are queued in the stack, so that PostMan can perform
them after finishing processing the incoming packet in the
TCP protocol. Furthermore, PostMan only keeps the neces-
sary procedures for receiving and sending packets in a TCP
stream. Other operations, like the ICMP protocol, are aban-
doned, either because they have nothing to do with packet
assembly, or they should be performed in the helpee’s stack.

Independent Per-Core Context. PostMan leverages per-core
thread (affiliated to a hardware thread) and independent
per-core context to avoid synchronization among different
assembling threads. On each helper node, we enable the
Receive Side Scaling (RSS) [46] function of NIC—this is
widely supported by today’s NICs—to hash flows into dif-
ferent physical queues in hardware, where each queue is
assigned to a dedicated CPU thread. PostMan does not
share any global information, hence the connection can be
locally processed on each core. PostMan sets up at least one
queue for each thread, such that the flows in each RSS group
can be processed independently without exchanging any
information between CPU cores. Consequently, PostMan
can scale well on today’s multi-core system. Note that RSS
will reduce a helper’s chance to batch packets, but since
PostMan is enabled only when the server is under high
load, there are still plenty of chances for a helper to batch
packets as shown in our evaluation. For each thread, Post-
Man uses hugepages to store raw packet data, similar as
many DPDK based applications, so as to reduce the number
of TLB misses; PostMan uses hardware-based CRC instruc-
tion for flow hashing to accelerate the assembling process.

5.2 Load Balancing

As presented in the previous section, PostMan is designed
for hardware thread and RSS built-in NIC. Hence, PostMan
scales well with the number of cores.

380 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

We use Consul [47] to automatically register and discover
the helpers nodes. Consul is a distributed and highly available
solution to automate network configurations, discover serv-
ices, and enable secure connectivity across any cloud or run-
time. Combining Consul with consul-template [48], a client
can get the available helper nodes from the consul-template
file when re-connecting. For helper nodes, their stateless
nature, which allows connections to be migrated freely across
helpers, significantly simplifies scaling and load balancing:
when a client connects to helpers, it randomly selects one.
Whenever some helper nodes are overloaded, they can simply
disconnect some clients and those clientswill automatically re-
connect to other helper nodes. To achieve this, PostMan uses a
simple yet effective load-balancing strategy: each helpermoni-
tors its own thoughtput andmemory utilization.When a client
establishes a connection, either for a new connection or for re-
connecting, it inquires about the load statistics of all the avail-
able helpers (except the one just disconnected from); each
helper will reply with its resource utilization, so that the client
can choose a helper using the roulette wheel selection algo-
rithm based on load; when a helper finds its resource utiliza-
tion is too high, it disconnects existing connections, so that the
corresponding clients can connect to other helpers.

PostMan has no inherent scalability bottleneck: since a
client can connect to any helper, PostMan does not need a
centralized master node to map clients to helpers.

5.3 When to Enable and Disable Helpers?

PostMan provides a mechanism to enable and disable help-
ers on demand, but in practice, we still need to answer the
policy question about when to enable and disable helpers.
In principle, both clients and servers can make the decision
and we observe the following trade-offs: A client can moni-
tor its perceived latency to the server and make decisions
accordingly: this approach brings minimal overhead to the
server side, but since a client cannot gain the overall load
statistics of the server, it may not be able to make the best
decisions in certain cases. For example, if the clients per-
ceive that the latency exceeds a certain threshold, the clients
would disconnect from servers and re-connect to helper
nodes. However, the increase of latency on the client side
may be caused by various issues, not only load imbalance
on the server side. The clients hence may make the false
decision on enabling PostMan. On the other hand, a server
certainly has more information to make a better decision,
but to execute the decision, the server must pay the over-
head of notifying corresponding clients and helpers, which
could be problematic if the server is already under heavy
load. Nevertheless, notifying clients to disconnect from the
overloaded server is the first step to mitigating bursty traf-
fic. Furthermore, since the clients cannot acquire the overall
system statistics, only the servers have sufficient load infor-
mation to make the decision. Hence, compared to the previ-
ous version, when to enable/disable PostMan is left to
servers.

Specifically, when the server detects its throughput is
nearly saturated, it will send packets consisting of the “re-con-
necting”message and the list of active helper nodes to the con-
nected clients via UDP. After receiving the information, the
clients will disconnect from the server and re-connect to

helpers (how to choose a helper is demonstrated in Sec-
tion 5.2). On the other hand, a server will disconnect its help-
ers if its throughput becomes low (e.g., when data migration
is finished or the load decreases), and send the notifications to
the clients via UDP aswell. If the messages are lost, the clients
will keep the current connections (connections to servers or
connections to helpers). As a result, if the server still receives
packets from clients/helpers. The server would send themes-
sages again till the sources of the packets change. Sending
UDP packets to notify the clients will inevitably incur certain
overhead, especially when the bursty traffic is arriving. How-
ever, the overhead can be negligible even when the server is
overloaded, which is verified in evaluation.

The destinations of packets do not affect the decision of
enabling/disabling PostMan. For each backend server, if
the throughput of the server exceeds a threshold, PostMan
will be enabled and the server will connect to helper nodes.
Otherwise, the server will disconnect from the helper nodes.
PostMan will be disabled until there is no server connecting
to the helper nodes.

6 EVALUATION

The goal of PostMan is to quickly mitigate the bursty traffic
directed to one or a few servers. To assess whether PostMan
achieves this goal, we evaluate the performance of PostMan
using various applications and workloads. In particular,
our evaluation answers the following questions:

� How well can PostMan help a service reduce the
load caused by bursty traffic?

� How is PostMan’s capability affected by packet size?
� How much resource does PostMan need to achieve

such benefit?
� How does the system perform when there are helper

failures?
To answer the first question, we run benchmarks on

Memcached and Paxos, and emulate the case of bursty traf-
fic by drastically increasing the load during the middle of
the experiment; we enable PostMan after such burst to mea-
sure 1) whether it can reduce the latency of the target service
and 2) how long it takes to enable PostMan. We compare the
results of PostMan to those of the data migration approach.

To answer the following three questions, we use a ping-
pong microbenchmark to measure the performance of Post-
Man under different parameters.

Memcached. Memcached is a key-value based memory
object caching system [49]. It is used widely in the data cen-
ters to cache data to speed up the lookups of frequently
accessed data. As reported in [17], Memcached is often used
to store small but hot data. We have modified 454 lines of
code in Memcached 1.4.32 to apply PostMan. The bench-
mark generates GET/SET commands with a fixed key size
(32 bytes) and different value sizes.

Paxos. Paxos is an asynchronous replication protocol to
achieve consensus in a network of unreliable processors [50].
Paxos needs 2f þ 1 replicas to tolerate f machine crashes
and asynchronous events (e.g inaccurate timeout caused by
network partitions). A number of systems, such as Mega-
store [51], Windows Azure [7] and Spanner [8], are using
Paxos for fault tolerance and since they use many Paxos

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 381

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

groups, one for each data partition, it is possible that a few
of them experience bursty traffic.

In Paxos, one replica is elected as leader, and it needs to
broadcast the received requests to other non-leader replicas.
It is a typical example of applications that do not care about
the contents of packets. Therefore, the leader can read the
assembled packets from PostMan and broadcast the assem-
bled packets directly. After the non-leader replicas receive
the assembled packets, they will disassemble them. Such
mechanism can avoid the redundant disassembling and
assembling operations at the leader replica, which is the bot-
tleneck in the system. To exploit such opportunities, we
implement our own version of Paxos using PostMan and
compare it to a vanilla version that reads individual packets
from the clients, assembles them, and then broadcasts the
assembled packets. For simplicity, we only implement the
Paxos protocol in the failure-free case, which is enough to
evaluate the performance benefit of PostMan.

Ping-Pong Benchmark. This benchmark [20] can test net-
work performance with configurable packet sizes. To avoid
the inaccuracy caused by TCP merging packets, this bench-
mark asks each client to perform a ping-pong like communi-
cation with the server: the client sends a packet to the server
and then waits for the server to send the packet back. By
doing so, since a client has only one outstanding packet,
TCP has no chance to merge packets.

Experiment Setup.We run all experiments on CloudLab [52]
with 15 machines. Each machine is equipped with an Intel
Xeon E5-2660 v3 @ 2.60GHz CPU, with 10 physical cores and
hyper-threading, and an Intel 82599ES 10-Gigabit NIC. These
severs runUbuntu 16.0.2 LTSwith Linux 4.8.0 kernel, and use
DPDK 16.07.2 for the helper nodes. For DPDK Poll Mode
Driver, we set the batch size to 64, which is the maximum
number of packets received/transmitted in each iteration. For
Paxos and Ping-pong experiments, we use IX [20], a state-of-
the-art network stack built upon DPDK, at the client side, so
that we can stress-test the server with a limited number of cli-
ent nodes. We also add 17 LoC to count the RX/TX bytes and
packets in the data plane of IX, whose impact on the perfor-
mance is negligible in our experiments. For Memcached
experiments, since the Linux stack is sufficient to saturate the
server, we do not switch to IX. By default, the application
server of our benchmarks runs on 16 cores (8 real cores with
hyperthreading). Note that in all experiments, when enabling
PostMan, our reported goodput does not include the PostMan
header and the TCP/IP/MAC header added by the helper
nodes, which allows a fair comparisonwith the goodputwith-
out PostMan.When using PostMan, a client enables helpers if
its observed 99 percentile latency (p99) is higher than 500
ms [20].

6.1 Effectiveness of PostMan

To measure the effectiveness of PostMan, we emulate the
case of bursty traffic on both Memcached and Paxos.

Memcached. We measure the p99 latency of Memcached
using GET requests with 32B keys and 64B values. As
shown in Fig. 5, we first use a light load, which incurs a
latency of 200ms, till the 5th time slot. Then we increase the
load drastically, which increases the latency to more than
500ms. At about the 9th time slot, we enable PostMan, which

asks clients to re-connect to helpers. Such re-connection
involves 660 client connections and finishes within 550ms.
Afterwards, the latency is reduced to around 300ms.

As a comparison,we emulate the datamigration by assum-
ing 50 percent of the clients are accessing of the 10 percent of
the keys (i.e., 100K keys in this experiment) in theMemcached
server. We introduce memcache-mover [53], a simple tool to
help copying the contents of a Memcached server into a new
one. Such a tool has two modes: the destructive mode deletes
the keys from the original Memcached after copying; the non-
destructive mode lists the keys before copying and keeps the
keys in the original Memcached. Since we configure memc-
ache-mover with non-destructive mode to keep the Memc-
ached processing requests while migrating keys in this
experiment. Therefore, we start a memcache-mover thread in
the Memcached server to copy the key-values to another
server at the 9th time slot. Such a thread needs to access the
internal data structure of Memcached, which may incur addi-
tional CPU overhead and contendwith client’s requests. After
data copy is complete, we remove half of the clients since they
should be re-directed to another server. As one can see, the
data migration takes about 13 seconds and during this proce-
dure, the latency of the service further increases, because the
migration traffic and the client’s traffic compete for resource.
One can of course limit the rate of migrating data to reduce
such interference, but that will further increase the length of
datamigration.

Paxos. We run a similar set of experiments on Paxos. We
measure the p99 latency of Paxos using a workload with
64B requests (Paxos does not execute the requests, so the
content of the requests does not matter). As shown in Fig. 6,
we first use a light load, which incurs a latency of 200ms, till
the 5th time slot. Then we increase the load, which increases
the latency to about 500ms. At about the 9th time slot, we
enable PostMan, which asks clients to re-connect to helpers.
Such re-connection involves 960 client connections and fin-
ishes within 750ms. Afterwards, the latency is reduced to
around 220ms.

Similarly, we emulate the data migration approach by
assuming 50 percent of the clients are accessing 10 percent
of the data. Therefore, we start a thread in the non-leader
server to copy the data to another server at the 9th time slot.
Since the leader has the highest overhead in Paxos, copying
data from a non-leader server should incur less interference
on the clients’ requests. After data copy is complete, we
remove half of the clients since they should be re-directed to
another server. As one can see, the data migration takes

Fig. 5. Mitigating bursty traffic in Memcached (PostMan enables two
helpers).

382 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

about 8 seconds. During this procedure, unlike the Memc-
ached experiments, data migration has little impact on the
clients’ requests, because it is performed from a non-leader
server. Note that after mitigating bursty traffic, the perfor-
mance of the two systems is different because they have dif-
ferent workloads: with PostMan, the server is processing
full load with big packets; after data migration, the server is
processing half load with small packets. Which one has bet-
ter performance depends on the actual workload: in Fig. 6
the system with PostMan has lower latency while in Fig. 5
the system with PostMan has slightly higher latency.

Both the Memcached and the Paxos experiments have
confirmed the effectiveness of PostMan: for services proc-
essing small packets, PostMan can quickly mitigate the long
latency caused by unexpected bursty traffic, because it can
offload the overhead of packet processing to helpers; data
migration, on the other hand, takes much longer to achieve
the same goal, and may further increase the latency during
data migration when data migration competes for resource
with processing clients’ requests.

Capabilities of PostMan. To understand in what circum-
stances can PostMan help to mitigate bursty traffic, we mea-
sure how Memcached’s and Paxos’ tail latency grow with
the load and how PostMan changes such trend.

As shown in Figs. 7 and 8, bothMemcached get experiment
and Paxos experiment show the same trend: when the load is
low (i.e., lower than 2000K messages/s in Memcached and
500Kmessages/s in Paxos), using PostManwill actually intro-
duce extra latency, because of the additional processing at the
helper; when the load grows, the latency of the original sys-
tems will grow as well due to queuing delay and when these
systems are close to saturation, their latency jumps, which is
what happens when the service experiences bursty traffic.
PostMan can offload their overhead of packet processing to
helpers and thus can improve their maximum throughput,
which reduces their queuing delay in a range of loads: for
Memcached get experiments, PostMan can reduce the latency
if the load is between 2000K and 6000Kmessages/s; for Paxos,
PostMan can reduce its latency if the load is between 500K
and 5000K messages/s. For ETC workload, when the band-
width of helpees is saturated, PostMan can improve through-
put by 1.6�; for USR workload, the throughput can be
increased by 2.9�. Memcached set experiments do not benefit
from PostMan, because as shown in our profiling, its bottle-
neck is lock contention, which has nothing to do with packet
processing. This set of experiments show that PostMan is
effective for a wide range of loads, but it does have its limits:

that’s why it is complementary to data migration, which does
not have such limits but requires a longer time to be effective.

Real-World Workloads. In the previous experiments, we
evaluate the performance gain of PostMan with Memcached
but only with laboratory-generated workloads. To evaluate
whether PostMan is effective for realistic Memcached work-
load, we useMutilate [54] as a load generator at the client side.
Mutilate can coordinate a number of machines with multiple
threads at the client side to generate Memcached workload
based on the key-value distribution predetermined, while
each machine can measure the average response latency and
p99 tail latency for the requests. In this paper, we use mutilate
to generate two kind of loads to represent two typical work-
loads reported by Facebook [17]: The ETCworkload accounts
for the largest proportion in Facebook, has 20B-70B keys, 1B-
1kB value; TheUSR is aworkload has two key size values, i.e.,
16B (40 percent) and 21B (60 percent), and just one value size
(2B). In these two workloads, each request is sent separately
and the time gap of the requests is generated by a Generalized
Pareto distribution with parameters Generalized Pareto with
parameters s ¼ 0, d ¼ 16:0292 and k ¼ 0:154971, starting
from the second request.

Figs. 9 and 10 show that both the experiments with the
ETC workload and the experiments with the USR workload
have the same trend as the Memecached and Paxos experi-
ments. Combined with previous analysis, because PostMan
can essentially reduce the queuing delay, both the ETC
experiments and the USR experiments can benefit from
PostMan in a range of loads: for ETC workload, PostMan
can reduce the latency if the load is between 1600K and
2600K message/s; for USR workload, PostMan can reduce
the latency if the load is between 2500K and 7200K mes-
sage/s. For ETC workload, when the bandwidth of helpees
is saturated, PostMan can improve throughput by 1.6�; for
USR workload, the throughput can be increased by 2.9�.
Apparently, PostMan is more effective for the USR work-
load, because the USR workload has averagely much
smaller packets than the ETC workload, as well as there are
lower proportion of set requests in USR work.

6.2 Effects of Packet Size

The capability of PostMan is affected by the packet size
because PostMan’s key idea of assembling packets naturally
works well with smaller packets. To quantitatively under-
stand how PostMan’s capability is affected by this factor,
we use the ping-pong microbenchmark to measure the
throughput of PostMan, since as shown in Section 6.1, the

Fig. 6. Mitigating bursty traffic in Paxos (PostMan enables two helpers).

Fig. 7. The latency with different load for Memcached and Memcached +
PostMan (64-byte payloads; PostMan enables up to five helper nodes).

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 383

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

maximal throughput of PostMan determines the range of
loads in which PostMan might be helpful. We compare the
throughput of PostMan to those of Linux and IX [20]. Since
we fail to run an IX server with more than nine cores, we
reduce the number of cores to eight in this set of experi-
ments. Since IX shows it can outperform mTCP [19], another
popular network stack, we do not further compare PostMan
with mTCP.

Fig. 11 shows the throughput of Linux under different
packet sizes, with and without PostMan. As shown in this
figure, when the server can utilize 8 cores for packet proc-
essing, PostMan can improve throughput when the payload
size is less than 400 bytes. However, for CPU-intensive
applications, this may not be a fair comparison because
PostMan can reduce CPU utilization as well as improving
throughput. Therefore, we also show the comparison when
the server can utilize only one core for packet processing. In
this case, PostMan can improve throughput when payload
size is smaller than 1460 bytes.

Fig. 12 shows the throughput of IX under different packet
sizes, with and without PostMan. It shows a similar trend as

the Linux experiment, though the turning points are
smaller, 260B and 920B respectively. The benefit of PostMan
still exists although becomes smaller than that in the Linux
experiment. This is because IX, with an optimized network-
ing stack, pays less overhead per packet compared to Linux.

Combining Figs. 11 and 12, one can see that Linux+Post-
man can even outperform IX when the packet size is small,
despite the fact that the former approach does not require
installing a new OS on all servers.

6.3 Performance of Helper Nodes

So far we have measured the performance gain at the server
side. A natural question is how much resource we need to
pay at the helper side to achieve such performance gain. To
answer this question, we measure how much throughput a
single helper can provide and whether PostMan scales with
the number of helpers.

In this set of experiment, we use IX as the server side to
ensure the server will not become the bottleneck. As Fig. 13
shows, a single helper node can process about 9.6 million

Fig. 8. The latency with different load for Paxos and Paxos + PostMan
(64-byte payloads; PostMan enables up to six helper nodes).

Fig. 9. The latency with different load for Memcached and Memcached +
PostMan (ETC payload; PostMan enables up to six helper nodes).

Fig. 10. The latency with different load for Memcached and Memcached
+ PostMan (USR payload; PostMan enables up to six helper nodes).

Fig. 11. The throughput with different payload sizes for Linux and Linux +
PostMan (PostMan enables up to six helper nodes).

Fig. 12. The throughput with different payload sizes for IX and IX + Post-
Man (PostMan enables up to six helper nodes).

Fig. 13. The performance scales linearly when increasing the number of
helpers nodes.

384 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

small messages (assembling 4.8 million requests and disas-
sembling 4.8 million responses) per second. When increas-
ing the number of helper nodes, the overall throughput of
PostMan scales almost linearly, till the helpee’s bandwidth
is saturated.

Such results have demonstrated that PostMan does need
a number of helper nodes to improve the throughput at the
server side: this is as expected because PostMan offloads
overhead instead of reducing overhead. Therefore, we
expect a small-scale deployment of PostMan to help a few
heavily loaded servers.

6.4 Effectiveness of Enabling/Disabling PostMan

To evaluate the effectiveness of enabling/disabling Post-
Man on demand, we set up a scenario where GET requests
of Memcached arrive at the server side with 32B keys and
64B values. As shown in Fig. 14, the load is low at first,
which incurs an average latency of about 370ms. Then we
increase the load at the 5th time slot, making the average
latency increase to about 700ms. The server activates helper
#1 and notifies the clients of disconnecting from the server.
At the 9th time slot, the clients re-connect to helper #1. The
re-connection involves 800 connections and finishes within
700ms. Though the latency decreases to 500ms, the load of
the server is too high. At about the 13th time slot, helper #2
is added by the server. Then helper #1 disconnects half of
the client connections and migrates them to the helper with
lower throughput (helper #2) for load balancing. It takes
about 250ms to finish migrating 400 connections. Note that
we set a 3s delay (i.e., from the 5th time slot to the 8th time
slot and from the 10th time slot to the 13th time slot) to dis-
play the experiment results (the change of latency and
throughput caused by re-connecting and migration is too
quick to be seen). At about the 20th time slot, the load

decreases, PostMan is disabled and the clients directly con-
nect to the server. The re-connection finishes in 450ms,
involving 800 connections. The results demonstrate that
PostMan can be enabled/disabled on demand based on the
fluctuating load.

6.5 Fault Tolerance

To test whether PostMan can tolerate failures of helper
nodes, we set up a simple scenario, in which two active
helper nodes are connected to the server. A Linux client
running on PostMan client library is performing request-
reply communication to the server, with 10 threads and
1000 connections in total. To examine the failure recovery of
helper nodes, we first let all clients connect to one helper,
record the throughput (measured every 100ms) of the cli-
ents and manually kill the connected helper node. As shown
in Fig. 15, the library waits until a timeout on receiving the
reply message, and then reconnects to the other helper
node. The migration takes about 400ms to recover all 1000
connections and restore to the previous rate.

Note that PostMan’s correctness does not rely on the cor-
rectness of timeout: even if the timeout is inaccurate (i.e., a
timeout is triggered when the previous helper node is still
alive), PostMan can still guarantee all its properties because
clients and servers will close the old connection and
exchange necessary information when establishing a new
connection (Section 4.2). This means in practice the develop-
ers can use a shorter timeout to improve availability. In this
experiment, we simply use an arbitrary 1-second timeout to
show that PostMan can function correctly despite failures.

6.6 Adaptive Batching

To test the effectiveness of our adaptive batching algorithm,
we change the load of our system and see how PostMan
reacts. As shown in Fig. 16, with the load increasing, the
batch interval decreases, implying that the helper nodes
batch packets more frequently. Although the size variation
seems noisy, the batch sizes are mostly larger than those
with low load. When the load decreases, the helper nodes
can reduce the batch size and increase the batch interval. As
a result, we can conclude that the batch size and batch inter-
val are well adapted to fluctuating load.

7 CONCLUSION

In this paper, we present PostMan, a distributed service to
mitigate load imbalance caused by bursty traffic, by offload-
ing the overhead of packet processing from heavily-loaded
servers and reducing data redundancy in packet headers. By

Fig. 14. PostMan is enabled/disabled on demand when the load of
server becomes high/low.

Fig. 15. The performance when PostMan recovers the connections by
mapping them to another active helper.

Fig. 16. Adaptively changing batch size and interval.

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 385

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

batching small packets remotely and on demand, PostMan
can utilize multiple nodes to help a heavily-loaded server
when bursty traffic occurs and can minimize the overhead
when there is no such bursty traffic.We design the helper net-
work stackwith DPDK andmTCP to improve packet process-
ing efficiency and remove duplicated headers to reduce
bandwidth consumption. To tolerate helper failures, PostMan
canmigrate connections across helpers. Because of their state-
less nature, PostMan helpers are highly scalable as well. Post-
Man not only can be enabled when the load of the server
becomes high, but also can scale well with the fluctuating
load. Experiments with Memcached and Paxos show that,
compared to data migration, PostMan can quickly mitigate
the extra latency caused by bursty traffic. Furthermore, Post-
Man can improve the goodput of Memcached and Paxos by
3:3� and 2:8� , respectively. When processing small packets,
the throughput of PostMan even outperforms IX over 10� at
most with one core and increases linearlywhen the number of
helper nodes grows. When a helper node fails, it only takes
about 0:4s to reconnect 1000 connections and restore to the
previous throughput.

ACKNOWLEDGMENTS

This work was supported in part by NSFC under Grants
61722206, 61761136014, 392046569 of NSFC-DFG and
61520106005, in part by National Key Research & Develop-
ment (R&D) Plan under Grant 2017YFB1001703, in part by
Fundamental Research Funds for Central Universities under
Grants 2017KFKJXX009 and 3004210116, in part by the
National Program for Support of Top-notch Young Professio-
nals in National Program for Special Support of Eminent
Professionals, and in part byNSFGrant CNS-1566403.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proc. 19th ACM Symp. Operating Syst. Princ., 2003,
pp. 29–43.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE Symp. Mass Storage Syst.
Technol., 2010, pp. 1–10.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. Symp. Operating Syst. Des. Implemen-
tation, 2004, pp. 137–150.

[4] F. Chang et al., “Bigtable: A distributed storage system for struc-
tured data,” in Proc. USENIX Symp. Operating Syst. Des. Implemen-
tation, 2006, pp. 205–218.

[5] Apache HBASE. Accessed: Jun. 2021. [Online]. Available: http://
hbase.apache.org/

[6] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou, “Boxwood: Abstractions as the foundation for storage
infrastructure,” in Proc. Symp. Operating Syst. Des. Implementation,
2004, pp. 105–120.

[7] B. Calder et al., “Windows Azure Storage: A highly available
cloud storage service with strong consistency,” in Proc. ACM
Symp. Operating Syst. Principles, 2011, pp. 143–157.

[8] J. C. Corbett et al., “Spanner: Google’s globally-distributed data-
base,” in Proc. Symp. Operating Syst. Des. Implementation, 2012,
pp. 261–264.

[9] E. B. Nightingale, J. Elson, J. Fan, O. Hofmann, J. Howell, and Y.
Suzue, “Flat datacenter storage,” in Proc. Symp. Operating Syst.
Des. Implementation, 2012, pp. 1–15.

[10] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M.
Rosenblum, “Fast crash recovery in RAMCloud,” in Proc. ACM
Symp. Operating Syst. Principles, 2011, pp. 29–41.

[11] G. DeCandia et al., “Dynamo: Amazon’s highly available key-
value store,” in Proc. ACM Symp. Operating Syst. Principles, 2007,
pp. 205–220.

[12] N. Bronson et al., “Tao: Facebook’s distributed data store for the
social graph,” in Proc. Annu. Tech. Conf., 2013, pp. 49–60.

[13] Glastonbury ticket website crashes 2016. [Online]. Available:
https://www.theguardian.com/music/2016/oct/09/
glastonbury-ticket-website-crashes

[14] Macy’s Web Site Buckles Under Heavy Traffic on Black Friday
2016. [Online]. Available: http://fortune.com/2016/11/25/
macys-black-traffic/

[15] Y. Niu, B. Luo, F. Liu, J. Liu, and B. Li, “When hybrid cloud meets
flash crowd: Towards cost-effective service provisioning,” in Proc.
IEEE Conf. Comput. Commun., 2015, pp. 1044–1052.

[16] Y. Niu, F. Liu, X. Fei, and B. Li, “Handling flash deals with soft
guarantee in hybrid cloud,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[17] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proc.
ACM Int. Conf. Meas. Model. Comput. Syst., 2012, pp. 53–64.

[18] R. Nishtala et al., “Scaling memcache at facebook,” in Proc. Symp.
Netw. Syst. Des. Implementation, 2013, pp. 385–398.

[19] E. Jeong et al., “mTCP: A highly scalable user-level TCP stack for
multicore systems,” in Proc. Conf. Netw. Syst. Des. Implementation,
2014, pp. 489–502.

[20] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” in Proc. Symp. Operating Syst. Des.
Implementation, 2014, pp. 49–65.

[21] P. Jin et al., “Postman: Rapidly mitigating bursty traffic by offload-
ing packet processing,” in Proc. USENIX Annu. Tech. Conf., 2019,
pp. 849–862.

[22] U. U. Hafeez, M. Wajahat, and A. Gandhi, “Elmem: Towards an
elastic memcached system,” in Proc. Int. Conf. Distrib. Comput.
Syst., 2018, pp. 278–289.

[23] B. He et al., “Comet: Batched stream processing for data intensive
distributed computing,” in Proc. ACM Symp. Cloud Comput., 2010,
pp. 63–74.

[24] B. Li, et al., “Kv-direct: High-performance in-memory key-value
store with programmable NIC,” in Proc. Symp. Operating Syst.
Principles, 2017, pp. 137–152.

[25] L. Mai et al., “NetAgg: Using Middleboxes for application-specific
on-path aggregation in data centres,” in Proc. ACM Int. Conf.
Emerg. Netw. Exp. Technol., 2014, pp. 249–262.

[26] Introduction to Parallel I/O. Accessed: Jun. 2021. [Online]. Avail-
able: https://www.olcf.ornl.gov/wp-content/uploads/2011/10/
Fall_IO.pdf

[27] Dpdk (data plane development kit). Accessed: Jun. 2021. [Online].
Available: https://www.dpdk.org/

[28] S. Peter et al., “Arrakis: The operating system is the control plane,”
in Proc. Symp. Operating Syst. Des. Implementation, 2014, pp. 1–16.

[29] L. Rizzo, “NetMap: A novel framework for fast packet I/O,”
in Proc. USENIX Annu. Tech. Conf., 2012, pp. 101–112.

[30] A. K. M. Kaminsky and D. G. Andersen, “Design guidelines for
high performance RDMA systems,” in Proc. Annu. Tech. Conf.,
2016, pp. 437–450.

[31] A. Kalia, M. Kaminsky, and D. G. Andersen, “Fasst: Fast, scalable
and simple distributed transactions with two-sided (RDMA) data-
gram RPCs,” in Proc. Symp. Operating Syst. Des. Implementation,
2016, pp. 185–201.

[32] J. Shi, Y. Yao, R. Chen, H. Chen, and F. Li, “Fast and concurrent RDF
queries with RDMA-based distributed graph exploration,” in Proc.
Symp.Operating Syst. Des. Implementation, 2016, pp. 185–201.

[33] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen, “Fast in-memory
transaction processing using RDMA and HTM,” in Proc. Symp.
Operating Syst. Principles, 2015, pp. 87–104.

[34] Y. Chen, X. Wei, J. Shi, R. Chen, and H. Chen, “Fast and general
distributed transactions using RDMA and HTM,” in Proc. Eur.
Conf. Comput. Syst., 2016, pp. 1–17.

[35] A. Kalia, M. Kaminsky, and D. G. Andersen, “Design guidelines
for high performance RDMA systems,” in Proc. Annu. Tech. Conf.,
2016, pp. 437–450.

[36] X. Lu, D. Shankar, S. Gugnani, and D. Panda, “High-performance
design of apache spark with RDMA and its benefits on various
workloads,” in Proc. IEEE Int. Conf. Big Data, 2016, pp. 253–262.

[37] J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based
MPI implementation over infiniband,” Int. J. Parallel Program.,
vol. 32, no. 3, pp. 167–198, Jun. 2004.

[38] N. Islam, W. Rahman, X. Lu, and D. Panda, “High performance
design for HDFS with byte-addressability of NVM and RDMA,”
in Proc. Int. Conf. Supercomput., 2016, pp. 1–14.

386 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 2, FEBRUARY 2022

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

http://hbase.apache.org/
http://hbase.apache.org/
https://www.theguardian.com/music/2016/oct/09/glastonbury-ticket-website-crashes
https://www.theguardian.com/music/2016/oct/09/glastonbury-ticket-website-crashes
http://fortune.com/2016/11/25/macys-black-traffic/
http://fortune.com/2016/11/25/macys-black-traffic/
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2011/10/Fall_IO.pdf
https://www.dpdk.org/

[39] D. Shankar, X. Lu, N. Islam, W. Rahman, and D. Panda, “High-
performance hybrid key-value store on modern clusters with
RDMA interconnects and SSDs: Non-blocking extensions,
designs, and benefits,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2016, pp. 393–402.

[40] W. Rahman, X. Lu, N. Islam, R. Rajachandrasekar, and D. Panda,
“High-performance design of YARN MapReduce on Modern
HPC clusters with lustre and RDMA,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2015, pp. 291–300.

[41] W. Reese, “Nginx: The high-performance web server and reverse
proxy,” Linux J., vol. 2008, no. 173, 2008.

[42] M.-C. Rosu andD.Rosu, “An evaluation of TCP splice benefits inweb
proxy servers,” inProc. Int. Conf.WorldWideWeb, 2002, pp. 13–24.

[43] C. Gunaratne, K. Christensen, and B. Nordman, “Managing
energy consumption costs in desktop PCS and LAN switches
with proxying, split TCP connections, and scaling of link speed,”
Int. J. Netw. Manage., vol. 15, no. 5, pp. 297–310, 2005.

[44] A. Pathak et al., “Measuring and evaluating TCP splitting for cloud
services,” in Proc. Int. Conf. Passive ActiveMeas., 2010, pp. 41–50.

[45] E. Y. Jeong et al., “mTCP: A highly scalable user-level TCP stack
for multicore systems,” in Proc. Conf. Netw. Syst. Des. Implementa-
tion, 2014, pp. 489–502.

[46] Receive side scaling on intel network adapters. Accessed: Jun.
2021. [Online]. Available: https://www.intel.com/content/
www/us/en/support/articles/000006703/network-and-i-o/
ethernet-products.html

[47] consul. 2020. Accessed: Jun. 2021. [Online]. Available: https://
www.consul.io

[48] consul-template. 2020. Accessed: Jun. 2021. [Online]. Available:
https://learn.hashicorp.com/consul/developer-configuration/
consul-template

[49] Memcached. Accessed: Jun. 2021. [Online]. Available: http://
memcached.org

[50] L. Lamport, “Paxos made simple,” ACM SIGACTNews (Distrib. Com-
put. Column), vol. 32, no. 4, pp. 51–58, Dec. 2001. Accessed: Jun. 2021.

[51] J. Baker et al., “Megastore: Providing scalable, highly available
storage for interactive services,” in Proc. Conf. Innov. Data Syst.
Res., 2011, pp. 223–234.

[52] CloudLab. [Online]. Available: https://cloudlab.us
[53] memcache-mover. 2017. Accessed: Jun. 2021. [Online]. Available:

https://github.com/quipo/memcache-mover
[54] mutilate. 2013. [Online]. Available: https://github.com/leverich/

mutilate

Yipei Niu received the BEng degree from Henan
University and the MEng degree from the Huaz-
hong University of Science and Technology. He
is currently working toward the PhD degree with
the School of Computer Science and Technol-
ogy, Huazhong University of Science and Tech-
nology, China. His research interests include
cloud computing, container networking, server-
less computing, and FPGA acceleration.

Panpan Jin received the BS and MS degrees in
computer science and technology from the Huaz-
hong University of Science and Technology,
Wuhan, China, in 2020. Her research interests
include data center networking and network func-
tion virturlization.

Jian Guo received the BS and PhD degrees from
the School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2017. His research interests
include data center networking and software-
defined networking.

Yikai Xiao received the MS degree from the
School of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2018. His research interests
include data center networking and softwarede-
fined networking.

Rong Shi received the BS and MS degrees in
computer science and engineering from the Uni-
versity of Electronic Science and Technology of
China in 2007 and 2011, and the PhD degree in
computer science and engineering from Ohio
State University in 2018. He is currently a
research scientist focusing on building systems
to provide disaster recovery for the data ware-
house with Facebook Inc. His research focuses
on distributed systems, particular fault tolerance
and scalability.

Fangming Liu (Senior Member, IEEE) received
the BEng degree from the Tsinghua University,
Beijing, and the PhD degree from the Hong Kong
University of Science and Technology, Hong
Kong. He is currently a professor with the Huaz-
hong University of Science and Technology,
Wuhan, China. His research interests include
cloud computing and edge computing, datacenter
and green computing, SDN/NFV/5G, and applied
ML/AI. He was the recipient of National Natural
Science Fund for Excellent Young Scholars,

National Program Special Support for Top-Notch Young Professionals,
Best Paper Award of IEEE/ACM IWQoS 2019, ACM e-Energy 2018,
and IEEE GLOBECOM 2011, First Class Prize of Natural Science of
Ministry of Education in China, and Second Class Prize of National Natu-
ral Science Award in China.

Chen Qian (Senior Member, IEEE) received the
BSc degree from Nanjing University in 2006, the
MPhil degree from HKUST in 2008, and the PhD
degree in computer science from the University
of Texas at Austin in 2013. He is currently an
associate professor with the Department of Com-
puter Science and Engineering, University of Cal-
ifornia Santa Cruz. He primarily works on the
fundamental problems of computer networks,
systems, and security. He was the recipient of
NSF CAREER Award in 2018. He is a senior
member of ACM.

Yang Wang received the bachelor’s and mas-
ter’s degree in computer science and technology
from Tsinghua University, in 2005 and 2008,
respectively, and the doctorate degree in com-
puter science from the University of Texas at
Austin, in 2014. He is currently an assistant pro-
fessor with the Department of Computer Science
and Engineering, Ohio State University. His cur-
rent research interests include distributed sys-
tems, fault tolerance, and scalability.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

NIU ET AL.: POSTMAN: RAPIDLY MITIGATING BURSTY TRAFFIC VIA ON-DEMAND OFFLOADING OF PACKET PROCESSING 387

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on March 02,2022 at 08:02:04 UTC from IEEE Xplore. Restrictions apply.

https://www.intel.com/content/www/us/en/support/articles/000006703/network-and-i-o/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000006703/network-and-i-o/ethernet-products.html
https://www.intel.com/content/www/us/en/support/articles/000006703/network-and-i-o/ethernet-products.html
https://www.consul.io
https://www.consul.io
https://learn.hashicorp.com/consul/developer-configuration/consul-template
https://learn.hashicorp.com/consul/developer-configuration/consul-template
http://memcached.org
http://memcached.org
https://cloudlab.us
https://github.com/quipo/memcache-mover
https://github.com/leverich/mutilate
https://github.com/leverich/mutilate

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

