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Abstract—Virtualization has become a central role in HPC
Cloud due to easy management and low cost of computation
and communication. Recently, Single Root I/O Virtualization
(SR-IOV) technology has been introduced for high-performance
interconnects such as InfiniBand and can attain near to native
performance for inter-node communication. However, the SR-
IOV scheme lacks locality aware communication support, which
leads to performance overheads for inter-VM communication
within a same physical node. To address this issue, this paper
first proposes a high performance design of MPI library over
SR-IOV enabled InfiniBand clusters by dynamically detecting
VM locality and coordinating data movements between SR-IOV
and Inter-VM shared memory (IVShmem) channels. Through our
proposed design, MPI applications running in virtualized mode
can achieve efficient locality-aware communication on SR-IOV
enabled InfiniBand clusters. In addition, we optimize commu-
nications in IVShmem and SR-IOV channels by analyzing the
performance impact of core mechanisms and parameters inside
MPI library to deliver better performance in virtual machines.
Finally, we conduct comprehensive performance studies by using
point-to-point and collective benchmarks, and HPC applications.
Experimental evaluations show that our proposed MPI library
design can significantly improve the performance for point-
to-point and collective operations, and MPI applications with
different InfiniBand transport protocols (RC and UD) by up to
158%, 76%, 43%, respectively, compared with SR-IOV. To the
best of our knowledge, this is the first study to offer a high
performance MPI library that supports efficient locality aware
MPI communication over SR-IOV enabled InfiniBand clusters.
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I. INTRODUCTION

Virtualization offers attractive techniques for Cloud Com-
puting, given the capabilities to scale resources on virtual
machines with the ease of system management and admin-
istration. They provide desirable features for users to meet
their various resource utilization requirements, including server
consolidation, performance isolation, security and live migra-
tion [1]. The advantages of Cloud Computing with virtualiza-
tion are certainly attractive to HPC users. High-performance
computing in the Cloud has already been widely adopted in
the industry. For instance, Cloud providers, such as Amazon’s
Elastic Compute Cloud (EC2) [2], rely on virtualization to
consolidate computing, storage and networking resources for
applications with required Quality of Service guarantees on
the shared underlying infrastructure.

Even though virtualization has gained significant mo-
mentum in Cloud Computing, running HPC applications on
Cloud systems with good performance is challenging. One
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of the biggest hurdles is the lower performance of virtual-
ized I/O devices [3]. This limits the adoption of virtualized
Cloud Computing systems for HPC applications. In the tra-
ditional HPC domain, high performance MPI libraries such
as MVAPICH2 [4] and OpenMPI [5], are able to provide
sub-microsecond latencies. However, recent studies [3] have
shown that achieving similar performance in virtualization
based Cloud Computing systems is still a challenge.

To address this issue, the community has recently intro-
duced an enhanced networking capability, Single Root I/O
Virtualization (SR-IOV) [6], which offers a high-performance
alternative for virtualizing I/O devices in Cloud Computing
systems. SR-IOV provides higher I/O performance and lower
CPU utilization compared to the traditional software-based
virtualization solutions. SR-IOV enables a PCIe device to
present itself as multiple virtual devices and each virtual
device can be dedicated to a single VM. Our earlier study [3]
shows that SR-IOV can attain near to native performance for
inter-node MPI point-to-point communication. Currently, SR-
IOV has been already used in production Cloud Computing
systems, such as the C3 and I2 instance types (using 10GigE)
in Amazon EC2 [2], where this feature shows higher packet
per second performance and lower network jitter.

Even though SR-IOV is enabled in these systems, inter-
VM communications within the node also have to use SR-
IOV, leading to performance overheads, which is the main
drawback of SR-IOV that it does not support VM locality
aware communication. On the other hand, high performance
MPI libraries in the HPC domain typically use shared memory
based schemes for intra-host communication. Similarly, inter-
VM shared memory (IVShmem) [7] is a novel feature pro-
posed for inter-VM communication, and offers shared memory
backed communication for VMs within a given host. Based on
the features that IVShmem provides, our recent performance
evaluations [8] exhibit that IVShmem can dramatically im-
prove the performance of intra-node inter-VM communications
compared to SR-IOV on virtualized InfiniBand clusters.

Based on these new features provided by both SR-IOV
and IVShmem, current MPI libraries need to be redesigned or
enhanced to fully exploit the benefits of these features on SR-
IOV and IVShmem enabled InfiniBand clusters, so that they
can meet the demand of high performance communication on
virtualization environments. In addition, as bridges between
MPI libraries and virtualized I/O devices, SR-IOV and IVSh-
mem channels may have different performance characteristics
compared to native network and shared memory channels,
which need to be explored further at the MPI level to deliver
optimal communication performance. All of these issues lead
to the following broad challenges:



1) How to design a high performance MPI library to
efficiently support locality aware MPI communication
over SR-IOV enabled InfiniBand clusters?

2) How to further optimize communications in MPI
libraries for the new channels of SR-IOV and IVSh-
mem in virtualized InfiniBand clusters?

3) What are the performance impacts of different Infini-
Band transport protocols (RC and UD), when run in
SR-IOV mode?

4) How much performance improvement can be
achieved by new design and enhancements on point-
to-point operations, collective operations and appli-
cations?

To address these challenges, we first propose a high perfor-
mance MPI library based on MVAPICH2 for SR-IOV enabled
InfiniBand clusters. Our new design is able to dynamically
detect VM locality information and coordinate data movement
between SR-IOV and IVShmem channels. Through these, the
enhanced MVAPICH2 library can efficiently support locality
aware communication and improve the overall MPI com-
munication performance further on virtualized environments.
Then, based on our proposed design, we further optimize
data communications in SR-IOV and IVShmem channels by
investigating the performance impact of core mechanisms and
parameters inside the MPI library. Finally, we conduct compre-
hensive performance evaluations for our proposed design on
InfiniBand clusters featuring SR-IOV. The results show that
our proposed design can improve the performance of point-
to-point and collective operations, and applications by up to
158%, 76%, 43%, respectively. We further explore the impact
of different InfiniBand transport protocols (RC and UD) on
MPI communications over SR-IOV enabled InfiniBand cluster.
In summary, this paper makes the following key contributions:

1) Analyze multiple VM locality detection alternatives
(static or dynamic) for MPI libraries on virtualized
environments and propose a dynamic VM locality
detection design to achieve locality-aware MPI com-
munication

2) Analyze and optimize data communications in SR-
IOV and IVShmem channels in the proposed design

3) Explore the impact of different InfiniBand transport
protocols (RC and UD) on MPI communications over
SR-IOV enabled InfiniBand clusters

4) Comprehensive performance evaluations showing the
benefits of the proposed design

To the best of our knowledge, this is the first paper that
attempts to offer a high performance MPI library, which can
support efficient locality aware MPI communication over SR-
IOV enabled InfiniBand clusters.

The rest of the paper is organized as follows. Section II
provides an overview of SR-IOV, IVShmem, and InfiniBand.
Section III presents our proposed design, and discusses the
detailed designs of key components. At the end of this section,
we discuss communication optimizations for IVShmem and
SR-IOV channels in MPI library. Section IV presents the eval-
uation methodology, and then presents the performance evalu-
ation results on point-to-point, collective operations, different
InfiniBand transport protocols and representative applications.
We discuss the related work in Section V, and conclude this

paper in Section VI.

II. BACKGROUND

A. Single Root I/O Virtualization (SR-IOV)
Single Root I/O Virtualization (SR-IOV) [6] is a PCI Ex-

press (PCIe) standard which specifies the native I/O virtualiza-
tion capabilities in PCIe adapters. SR-IOV is applicable when
the PCIe interface works in a single server environment. As
shown in Figure 1(a), SR-IOV allows a single physical device,
or a Physical Function (PF), to present itself as multiple virtual
devices, or Virtual Functions (VFs). Each virtual device can be
dedicated to a single VM through the PCI pass-through, which
allows each VM to directly access the corresponding VF.
Hence, SR-IOV is a hardware-based approach to implement
I/O virtualization. Furthermore, VFs are designed based on
the existing non-virtualized Physical Functions (PFs); hence,
the drivers of the current adapters can also be used to drive
the VFs in a portable manner.

B. Inter-VM Shared Memory (IVShmem)
IVShmem (e.g. Nahanni) [7] provides zero-copy access to

data co-resident on VM shared memory, for guest-to-guest and
host-to-guest communications on the KVM platform. IVSh-
mem is mainly designed and implemented in system calls layer
and its interfaces are visible to user space applications as well.
Figure 1(b) shows that IVShmem contains three components:
the guest kernel driver, the modified QEMU supporting PCI
device, and the POSIX shared memory region on the host
OS. The shared memory region is allocated by host POSIX
operations and mapped to QEMU process address space. The
mapped memory can be used by guest applications by being
mapped to guest user space. Through supporting zero-copy,
IVShmem can achieve better performance.

C. InfiniBand
InfiniBand [9] is an industry standard switched fabric de-

signed for interconnecting nodes in HPC clusters. The TOP500
rankings released in June 2014 indicate that more than 44%
of the computing systems use InfiniBand as their primary
interconnect. Remote Direct Memory Access (RDMA) is one
of the main features of InfiniBand, which allows software to
remotely access memory contents of another remote process
without any involvement at the remote side.

When a connection between two channel adapters is es-
tablished, five kinds of transport layer communication proto-
cols defined by the InfiniBand specification can be selected:
Reliable Connection (RC), Reliable Datagram (RD), Unreli-
able Connection (UC) , Unreliable Datagram (UD) and Raw
Datagram. RC and UD are two common protocols. RC is
the most popular transport service for implementing MPI
over InfiniBand. For connection-oriented RC, a QP must be
dedicated to communicating with only one other QP. That
is to say, each peer communicating with N other peers thus
needs to create at least N QPs. RC provides RDMA capability,
atomic operations, and reliable service. Data transfer between
two entities using RC receives acknowledgment. UD is a
connection-less and unreliable transport without acknowledge-
ment. It is the most basic transport specified for InfiniBand.
The advantage is that a single UD QP can communicate with
any number of other UD QPs. However, UD does not guarantee
reliability or message ordering.
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Fig. 1: Overview of Inter-VM Shmem and SR-IOV

III. PROPOSED DESIGN

In this section, we first present the overview of our
proposed design for high performance MPI library. Then we
discuss and analyze different locality detection approaches and
describe our design of locality detector. Next, we present the
design details of communication coordinator. In Section III-D
and Section III-E, we discuss the communication optimization
for IVShmem and SR-IOV channel, respectively.

A. Design Overview
Our design is based on MVAPICH2, an open-source MPI

library over InfiniBand. For portability reasons, it follows
a layered approach, as shown in Figure 2(a). The Abstract
Device Interface V3 (ADI3) layer implements all MPI-level
primitives. Multiple communication channels provide basic
message delivery functionalities on top of communication
device APIs. There are two types of communication channels
available in MVAPICH2: a shared memory channel commu-
nicating over user space shared memory to peers hosted in
the same host and a network channel communicating over
InfiniBand user-level APIs to other peers.

Without any modification, default MVAPICH2 can run in
virtualization environment. However, VMs running on same
host cannot use shared memory channel (SMP) for commu-
nication, which can lead to severe performance limitations.
In our proposed high performance MPI library, as shown in
Figure 2(b) we add two components, which are ’Communi-
cation Coordinator’ and ’Locality Detector’ between ADI3
layer and channel layer. In the channel layer, we integrate
IVShmem channel into the library as well as the SR-IOV
channel. Communication Coordinator is responsible for se-
lecting communication channel in lower channel layer, while
Locality Detector maintains the information of local VMs on
the same host. Communication Coordinator makes a decision
on going through a channel by utilizing Locality Detector to
identify whether the communicating VMs are co-resident on
the same host or not. If they are co-resident in a given host,
Communication Coordinator will select IVShmem channel for
the communication between these co-located VMs. Otherwise,
it will go through SR-IOV channel.

The locality detector will further identify whether there are
multiple processes running in the same VM, then the Commu-
nication Coordinator will select default SMP channel in VM

(not host) for the communication between those processes.
Since this paper mainly focuses on communication optimiza-
tion for co-resident VMs, and also default SMP channel in
VM is similar with the one in host, we will not discuss this
channel in details.

B. Locality Detector
Given the above functionality provided by IVShmem in

Section II-B, the way to identify co-resident VMs among all
VMs becomes a critical problem. Basically, there are two
locality identification alternatives we can evaluate.

The first one is a static method, which is mainly used when
the information of co-resident VMs is preconfigured by the
administrator, and it is assumed that the membership of co-
resident VMs do not change during the communication after-
wards. Thus, the VM locality information is already available
when launching the MPI jobs. The advantage of this approach
is that the processes can be directly re-mapped in the VM layer
based on the above information, with little overhead. But the
problem is that without intervention from the administrator,
the static information cannot be dynamically updated.

The other one is dynamic detection, that is MPI jobs will
dynamically detect the VMs running on the same host. And
according to who initiates the process, there are two ways to
implement it: Since privileged domain plays a center role in
virtualization environment, we can use it to periodically gather
VM information on the same host. VM peers advertise their
membership information, such as presence and absence to all
other VMs running on the same host. This approach is asyn-
chronous and needs centralized management from privileged
domain. However, the period between two periodical gather
operations needs to be configured properly. If the period is set
longer than needed, it cannot bring accurate co-residency in-
formation in time. If it is too short, it might lead to unnecessary
probing and thus waste undesirable CPU cycles. The second
approach works in synchronous mode. When a VM takes a
significant action, it will notify related VMs to update the co-
residency information. Thus, the updates are immediate upon
the occurrence of the corresponding events. In comparison,
the first approach periodically collects the status from co-
resident VMs and thus introduces delayed update wasting
CPU cycles, and also potential inconsistency, while for the
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Fig. 2: MVAPICH2 Stack Running in Native and Virtualization Environments

second approach, it is possible that co-residency information
of multiple VMs changes concurrently [10].

To take advantage of the dynamic detection approach, we
propose a locality detector component. Based on IVShmem
support, we create a VM list structure on the shared memory
region of each host. And each process will write its own
membership information into this shared VM list structure
according to its global rank. For example, consider launching
an 8-process MPI job, one process per VM. Let ranks 0,
1, 4, and 5 run on the same host (e.g. host1), as shown in
Figure 3, and other 4 ranks run on another host (e.g. host2).
Then the four VMs (ranks 0, 1, 4 and 5) will write their own
membership information into positions 0, 1, 4 and 5 of VM list
on host1 correspondingly. Other positions will be left blank.
Similarly, other four VMs write at positions 2, 3, 6 and 7 of
VM list on host2. In this case, the local number of processes on
host1 can be acquired by checking and counting whether the
membership information has been written or not. Similarly,
their local ordering will be maintained by their positions in
VM list. Therefore, the written membership information on
the same VM list indicates that they are co-resident.

Since byte is the smallest granularity of memory access
without lock. In our proposed design, the VM list is designed
by using multiple bytes. Each byte will be used to tag each
VM. This guarantees that multiple VMs on the same host are
able to write membership information on their correspond-
ing positions concurrently without introducing lock&unlock
operations. This approach reduces the overhead of locality
detection procedure. Moreover, the proposed approach will not
introduce much overhead of traversing the VM list. Take a
one million processes MPI job for instance, the whole VM
list only occupies 1 Mega bytes memory space. Therefore, it
brings good scalability on virtualized MPI environment.

C. Communication Coordinator
The default MVAPICH2 stack, as shown in Figure 2(a),

can also be deployed in virtualization environment, whereas
the processes running on different VMs can not communicate
through shared memory channel, even though they are co-
located on the same host. However, with the help of Locality
Detector and VM lists which are created and maintained in
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shared memory region, the co-resident VMs can be dynam-
ically identified. Another key component in our proposed
design is called Communication Coordinator, as shown in
Figure 4. It is responsible for capturing the communication
channel requests coming from the upper layer and carrying out
the channel selection by checking the membership information
provided by the Locality Detector. If the communicating
processes are co-resident, Communication Coordinator will
schedule them to communicate through IVShmem channel.
Otherwise, they will go through SR-IOV channel. For example,
we can see in Figure 4 that, Guest 1 and Guest 2 are co-located
on the same host. MPI process rank 1 and rank 4 are running
on Guest 1 and Guest 2, respectively. They can access the
same VM list located in IVShmem region by mapping the
IVShmem region to their own user space. By checking the
flag at position 4 of VM list, the communication coordinator
finds that the flag has been set, which means process rank 4
is on the same host. Thus, communication coordinator will
schedule the communication between rank 1 and rank 4 to go
through IVShmem channel, as presented in the solid line. If
the communication coordinator finds that the flag is not set
(e.g. position 6), then it will coordinate the communication
between rank 1 and rank 6 to go through SR-IOV channel as
shown in dashed line. Same thing happens on the Guest 2 side
also, rank 4 will be scheduled to communicate with rank 6
using SR-IOV channel.
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D. Optimizing Communication for IVShmem Channel
When IVShmem channel is selected by Communication

Coordinator, the default environment setting, which is
optimized for native environment, may not be able to benefit
MPI communication by the greatest extent, therefore, we
need to optimize the IVShmem channel further in order to
achieve high performance message passing for intra-host
inter-VM communication. There are four related parameters

need to be optimized, which are SMP EAGER SIZE,
SMP SEND BUF SIZE, SMPI LENGTH QUEUE
and SMP NUM SEND BUFFER. SMP EAGER SIZE
defines the switch point between Eager protocol and
Rendezvous protocol. SMPI LENGTH QUEUE is the
size of the shared memory buffer which is used to store
outstanding small and control messages. Messages larger
than SMP EAGER SIZE are packetized and sent out in
a pipelined manner. SMP SEND BUF SIZE is the packet
size. SMP NUM SEND BUFFER is the number of send
buffers. Figure 5 shows the optimization result. Here we
only show bandwidth optimization result because there is
no clear difference in terms of latency and buffer space
(memory footprint) constraints. As we can see in Figure 5(a),
the optimal bandwidth performance, which is more than
9.3Gb/s, is delivered when SMP EAGER SIZE is set to
32k. Even though 64k also delivers similar bandwidth
performance, we still select 32k in order to reduce memory
footprint. For large size message transfer, it can be observed
in Figure 5(b) that based on optimized SMP EAGER SIZE
value, bandwidth performance can achieve 9.6Gb/s
when SMP SEND BUF SIZE is set to 16k. Similarly,
SMPI LENGTH QUEUE and SMP NUM SEND BUFFER
are set to 128k and 16, respectively.

E. Optimizing Communication for SR-IOV Channel
For the optimization of SR-IOV channel, we need to

consider parameter MV2 IBA EAGER THRESHOLD, which
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Fig. 6: Communication Optimization for SR-IOV Channel

specifies the switch point between eager and rendevous proto-
col. If the threshold is too small, then it could incur additional
overhead of RTS/CTS exchange during rendezvous transfer
between sender and receiver for many message sizes. If it
is too large, then it will require larger amount of mem-
ory space for the library. Therefore, we need to optimize
this channel to have optimal threshold for inter-host inter-
VM communication. We measure the performance by setting
MV2 IBA EAGER THRESHOLD to different values from
13k to 20k. In Figure 6, just some representative values are
shown to make the contrast more clear. We can see in Figure 6
that it delivers the optimal performance in terms of latency and
message rate, when MV2 IBA EAGER THRESHOLD is set
to 17k.

IV. PERFORMANCE EVALUATION

In this section, we describe our experimental testbed and
discuss the evaluation results on different dimensions based
on the optimization results mentioned in Section III-D and
Section III-E. We evaluate the performance of our proposed
design on SR-IOV enabled InfiniBand clusters from four di-
mensions, which are point-to-point communication, collective
operations, different InfiniBand transport protocols (RC and
UD), and representative HPC applications.

A. Experiment Setup
Our testbed is an InfiniBand cluster consisting of four

physical nodes, where each node has dual 8-core 2.6 GHz
Intel Xeon E5-2670 (Sandy Bridge) processors with 20MB
L3 shared cache, 32 GB main memory and equipped with
Mellanox ConnectX-3 FDR (56 Gbps) HCAs with PCI Express
Gen3 interfaces. We use RedHat Enterprise Linux Server
release 6.4 (Santiago) with kernel 2.6.32-279.19.1.el6.x86 64
as the host and VM OS. In addition, we use the Mellanox
OpenFabrics Enterprise Distribution MLNX OFED LINUX-
2.1-1.0.0 to provide the InfiniBand interface with SR-IOV
support and use KVM as the Virtual Machine Monitor (VMM).
Each VM is pinned to a single core and has 1.5 GB main
memory. All applications and libraries used in this study are
compiled with gcc 4.4.6 compiler.

All experiments are conducted by comparing our pro-
posed design with MVAPICH2-2.0. We choose OSU Micro-
Benchmarks (OMB) 4.3 to do the evaluations. Over all four

physical nodes, we allocate 8 VMs per node to conduct
experiments for collectives, different transport protocols and
applications. For point to point experiments, we select two
VMs from them.

B. Point-to-Point Communication Performance
In this section, we evaluate MPI point-to-point commu-

nication performance for inter-VM in terms of latency and
bandwidth.

Figure 7(a) and Figure 7(b) show the point-to-point per-
formance for intra-host inter-VM communication. From these
two figures, we can observe that compared to SR-IOV, our
proposed design can significantly improve the point-to-point
performance by up to 84% and 158% for latency and band-
width, respectively. If we compare the performance of our
design with that of native MPI, we can see that our design
only has 3%-8% overheads, which are much smaller than
the overheads of SR-IOV. For example, at 1KB message
size, MPI point-to-point latency of SR-IOV is around 2.36μs,
while the latencies of our design and native mode are 0.52μs
and 0.5μs, respectively. In this case, our design just shows
about 4% overhead. Through this comparison, we can clearly
see the performance benefits by incorporating locality-aware
communication into MPI library over virtualized environments.

For inter-host inter-VM point-to-point communication, as
shown in Figure 7(c) and Figure 7(d), our proposed design
has similar performance with SR-IOV in terms of latency and
bandwidth. This is because the communication coordinator
in the proposed design will select the SR-IOV channel for
inter-host inter-VM data movement. These results also show
that the newly introduced components in our proposed design
do not cause extra overhead. If we compare the performance
with native MPI, we can see that the overheads of both our
proposed design and SR-IOV are very small. For example, the
bandwidth of native MPI is about 6.3Gb/s at the message size
of 256KB, while both SR-IOV and our design can achieve 6.2
GB/s bandwidth.

From the above discussion, we can see that our proposed
design can achieve near-native performance for both intra-
host inter-VM and inter-host inter-VM communications. This
is because our design can fully exploit the benefits of locality-
aware communication for intra-host inter-VM data movement,



while maintaining similar performance behavior as SR-IOV
channel for inter-host inter-VM communication.

C. Collective Communication Performance
We select four widely used collective communication op-

erations in our evaluations: Broadcast, Allgather, Allreduce
and Alltoall. As shown in Figures 8(a)-Figure 8(d), we can
clearly observe that, compared with SR-IOV, the proposed
design effectively cuts down the latency for each collective
operation across 32 VMs.

We show the Broadcast performance in Figure 8(a). The
latency of SR-IOV scheme is 6.73 μs at 4 bytes message
size, while it is 4.44 μs for proposed design, with 34%
improvement. The performance benefit comes from locality-
aware based communication in our proposed design instead of
IB loopback in SR-IOV. The Allgather performance is shown
in Figure 8(b), the latencies of SR-IOV scheme and proposed
design at 4 bytes message size are 15.77 μs and 11.2 μs, re-
spectively. The proposed design improves the performance by
29%. Figure 8(c) shows us the latency of Allreduce operation.
We can see that at 4 bytes message size the latency values
are 17.29 μs and 6.97 μs for SR-IOV scheme and proposed
design, respectively. The performance improvement at 4 bytes
message size achieves 60%. With respect to Alltoall operation,
as shown in Figure 8(d), SR-IOV and proposed design deliver
32.38 μs and 27.20 μs latencies, respectively. The proposed
design helps reduce the latency of alltoall at 4 bytes message
size by 16%. For different message sizes, the proposed design
can improve latency of the above four collective operations
(Brocast, Allgather, Allreduce, Alltoall) by up to 68%, 76%,
61%, 29%, respectively.

Based on the experimental evaluation results, our proposed
design can gain remarkable improvement for MPI collective
operations compared to SR-IOV.

D. Different InfiniBand Transport Protocol (RC & UD)
In Section II-C, we give the introduction of different

InfiniBand transport protocols. In this section, we evaluate
the performance of SR-IOV and proposed design on different
InfiniBand transport protocols. The point-to-point and collec-
tive results are shown in Figure 9 and Figure 10, respectively.
Figure 9 shows that the RC protocol performs better than UD
for SR-IOV scheme in terms of latency for intra-host inter-
VM point-to-point communication. The latency difference can
be up to 60%. This is because MVAPICH2 library enables
Fast Path feature by default for RC protocol, which supports
RDMA based communication, while the UD scheme does not
support this feature. Moreover, the reliability support for UD in
MPI library costs some additional overhead. Therefore, we see
performance differences between RC and UD protocols on SR-
IOV scheme. Since our proposed design uses IVShmem based
communication instead of SR-IOV within the same node, it
does not have this kind of performance differences as SR-IOV
scheme.

Based on the above discussion of point-to-point commu-
nication, we can reasonably explain the performance behavior
of following collective operations. For Broadcast operation in
Figure 10(a), the proposed design outperforms SR-IOV scheme
for both RC and UD protocols. In addition, there exists clear

performance difference between RC and UD protocols for SR-
IOV scheme. Compared with RC, UD protocol increases the
broadcast latency by up to 206%. Whereas the proposed design
delivers similar performance for these two transport protocols.
This is also because the intra-host inter-VM communication
goes through IVShmem channel instead of SR-IOV channel
in the proposed design and it does not get much affected by
different transport protocols. However, as the proportion of
inter-host inter-VM communication to total amount of commu-
nication increases, the influence of different transport protocols
will be more obvious accordingly. Similar to Broadcast, other
three collective operations, Alltoall, Allgather and Allreduce
for SR-IOV scheme on the UD protocol, incur up to 173%,
76%, 118% latency increasing, respectively, compared with the
RC protocol. On the contrast, our proposed design still delivers
close performance when switching from RC to UD protocol.
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Fig. 9: Intra-host Inter-VM Point-to-Point Performance on RC
and UD Protocols

E. Application Performance
In this section, we evaluate our proposed design and SR-

IOV scheme with two end applications: P3DFFT and NAS
Parallel Benchmarks (NPB) .

Figure 11 shows the performance comparison of SR-IOV
scheme and proposed design on Class B NAS benchmarks on
32 VMs across 4 nodes. Figure 11(a) shows that our proposed
design improves the performance for NAS by up to 43% over
SR-IOV based scheme. For IS benchmark, SR-IOV scheme
needs 2.84s, whereas our proposed design takes only 1.61s.
In Figure 11(b), we show the performance of SR-IOV scheme
and our proposed design with P3DFFT. We run all 5 tests with
the same input size 512×512×512. From the results, we can
see that our proposed scheme outperforms the SR-IOV scheme
in all the cases. The improvements for INVERSE, RAND,
SINE and SPEC are 29%, 33%, 29% and 20%, respectively.
The performance benefits for P3DFFT comes from shared
memory collective operations that are not available in SR-IOV
scheme.

V. RELATED WORK

In general, I/O virtualization schemes can be classified
into software based and hardware based schemes. Earlier
studies such as [11], [12] have shown network performance
evaluations of software-based approaches in Xen. Studies [13],
[14], [15] have proved that SR-IOV demonstrates significantly
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Fig. 7: Point-to-point Performance

better performance compared to that of software-based solu-
tions for 10GigE networks. Liu et. al [13] provides a detailed
performance evaluation on the environment of SR-IOV capable
10GigE Ethernet in KVM. Also, they studied several important
factors that affect network performance in both virtualized and
native environments. Studies [16], [17], [18], [19] with Xen
demonstrate the ability to achieve near-native performance in
VM-based environment for HPC applications. In addition, the
work [7] first presented the framework of Nahanni and gave
its introduction in details. Based on it, MPI-Nahanni user-level
library was developed, which ported MPICH2 library from
Nemesis channel that used memory-mapped shared memory
to Nahanni in order to accelerate inter-VM communication on
the same host.

In our earlier studies, we proposes designs to improve
intra-node point-to-point communication operations using an
Inter-VM Communication Library (IVC) and re-designed the
MVAPICH2 library to leverage the features offered by the
IVC [16]. However, this solution is based on the Xen plat-
form and does not show the studies with SR-IOV enabled
InfiniBand clusters. Our early evaluation of using SR-IOV
with InfiniBand [3] shows that while SR-IOV enables low-
latency communication, MPI libraries need to be redesigned
carefully in order to provide advanced features to improve
intra-node inter-VM communication. Within a single node,
our recent evaluation [8] reveals the fact that the performance
of intra-node inter-VM communications can be dramatically

improved through IVShmem, compared to SR-IOV scheme
on virtualized InfiniBand clusters. This exhibits significant
performance potential to optimize MPI communication across
nodes further.

Therefore, based on our previous evaluation, we present a
solution for MPI inter-node communication in this paper. We
propose a new design using high performance MPI library with
the support of KVM and IVShmem [7], which dynamically
detects the VM locality information and coordinates commu-
nications between IVShmem and SR-IOV channels to offer
effective locality-aware communication on SR-IOV enabled
InfiniBand clusters. The evaluation results show promising
results of our proposed design with regard to point-to-point,
collective benchmarks and end-applications.

VI. CONCLUSION AND FUTURE WORK

In this paper, we analyzed multiple VM locality detec-
tion approaches and proposed a high performance design of
MPI library over SR-IOV enabled InfiniBand clusters, which
can dynamically detect co-located VMs and coordinate com-
munications between SR-IOV and IVShmem channels. The
proposed design efficiently supports locality-aware communi-
cation across VMs. We further analyzed and optimized MPI
library level core mechanisms and design parameters in both
SR-IOV and IVShmem channels for virtualized environments.
Based on our new design, we conducted comprehensive per-
formance evaluations by using point-to-point, and collective
benchmarks and representative HPC applications.
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Fig. 8: Collective Communication Performance on 32 VMs (8 VMs per node)

Our performance evaluations show that, compared to SR-
IOV, our proposed design can significantly improve the per-
formance of intra-host inter-VM communication by up to 84%
and 158% for latency and bandwidth, respectively, while the
proposed design only introduces 3%-8% overhead compared
with native mode. The evaluations also show that our proposed
design effectively integrates SR-IOV channel for inter-host
inter-VM communication. On the aspect of collective opera-
tions, the proposed design can achieve up to 68%, 76%, 61%,
and 29% performance improvements for Broadcast, Allgather,
Allreduce, and Alltoall, respectively, compared to SR-IOV. In
addition, the evaluations for different InfiniBand transport pro-
tocols (RC and UD) indicate that SR-IOV incurs performance
degradation when switching the protocol from RC to UD in
MPI library. Whereas based on locality-aware communication,
our proposed design delivers similar performance between
these two protocols. Finally, compared to SR-IOV, our design
outperforms NAS and P3DFFT by up to 43% and 33%,
respectively.

In the future, we plan to explore the effect of different col-
lective algorithms on virtualization environment and improve
current high performance MPI library to support live migration
on SR-IOV enabled InfiniBand clusters.
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