
Cheap	and	Available	State	
Machine	Replication

Rong Shi,	Yang	Wang
The	Ohio	State	University

Protect	data	from	failures

• Data	is	important
Durability:	data	is	never	lost
Availability:	data	can	be	accessed	at	any	time

• Failures
Power	loss,	DRAM	bit	errors,	disk	corruption,	software	bugs,	…

Protect	data	from	failures

• Data	is	important
Durability:	data	is	never	lost
Availability:	data	can	be	accessed	at	any	time

• Failures
Power	loss,	DRAM	bit	errors,	disk	corruption,	software	bugs,	…

How	to	ensure	data	durability	and	availability	despite	failures?

Protect	data	from	failures

• Data	is	important
Durability:	data	is	never	lost
Availability:	data	can	be	accessed	at	any	time

• Failures
Power	loss,	DRAM	bit	errors,	disk	corruption,	software	bugs,	…

How	to	ensure	data	durability	and	availability	despite	failures?

Replication

Basic	idea	of	replication

Basic	idea	of	replication

Basic	idea	of	replication
Redundancy	=>	fault	tolerance

Basic	idea	of	replication
Redundancy	=>	fault	tolerance

Data	replication	=>	availability	and	durability

• Primary-backup: f+1 replicas	=>	f	crash	failures
Data:	GFS	[Ghemawat SOSP’03],	HDFS	[ShvachkoMSST’10],	…

• Paxos: 2f+1 replicas	=>	f crash	failures	and	timing	errors	(e.g.	long	message	delay)
Lock	service:	Boxwood	[MacCormick OSDI’04],	Chubby	[Burrows	OSDI’06],	…
Data:	SMART	[Lorch Eurosys’06],	…
Metadata:	MS	Azure	[Calder	SOSP’11],	…
Data	+	metadata:	Megastore	[Baker	CIDR’11],	Spanner	[Corbett	OSDI’12],	…

• BFT:	3f+1 replicas	=>	f	arbitrary	failures
Data	+	metadata:	FARSITE	[Adya OSDI’02],	UpRight [Clement	SOSP’09],	…

Stronger	replication	requires	more	replicas

Stronger	replication	requires	more	replicas

• Are	we	willing	to	pay	a	higher	cost	for	stronger	guarantees?

Stronger	
guarantees

Lower	
replication	cost

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

Activate	minimum	 subset	of	replicas

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

Activate	minimum	 subset	of	replicas

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

Activate	minimum	 subset	of	replicas

Activate	a	backup	replica

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

Activate	minimum	 subset	of	replicas

Activate	a	backup	replica

The	system	is	unavailable	when	activating	a	backup	
replica	(transfer	data)

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

Activate	minimum	 subset	of	replicas

Activate	a	backup	replica

The	system	is	unavailable	when	activating	a	backup	
replica	(transfer	data)

Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica

• Separating	agreement	from	execution	([Yin	SOSP’03])
Separating	a	replica	into	an	agreement	node	and	an	execution	node
In	BFT,	#	execution	nodes	can	be	smaller	than	#	agreement	nodes
Not	effective	for	applications	that	are	heavy	in	agreement	or	using	Paxos

Existing	work	made	other	tradeoffs

• Separating	agreement	from	execution	([Yin	SOSP’03])
Separating	a	replica	into	an	agreement	node	and	an	execution	node
In	BFT,	#	execution	nodes	can	be	smaller	than	#	agreement	nodes
Not	effective	for	applications	that	are	heavy	in	agreement	or	using	Paxos

• Separating	metadata	from	data	(Gnothi [Wang	ATC’12])
Full	replication	of	metadata	and	partial	replication	of	data
Only	effective	for	block	storage

• …...

Existing	work	made	other	tradeoffs

Is	it	possible	to	reduce	replication	cost	without	
hurting	availability	and	correctness?

Stronger	
guarantees
Strong	
guarantees
Lower	
replication	cost

Is	it	possible	to	reduce	replication	cost	without	
hurting	availability	and	correctness?

Stronger	
guarantees

Yes for	many	popular	protocols	(e.g.	Paxos,	UpRight)

Strong	
guarantees
Lower	
replication	cost

Highlights

u:		number	of	omission	failures
r:		number	of	commission	failures

Protocol Original Our	approach

Paxos 2f	+	1 f	+	1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1

Background:	State	Machine	Replication	(SMR)

Server	
program

Deterministic	
state	machine

Server	
program
Server	

Application

input

input

input

input

input

Background:	State	Machine	Replication	(SMR)

Server	
program

Deterministic	
state	machine

Server	
program
Server	

Application

Replica

Replica

input

input

input

input

input

Server	
program

Server	
Application

Background:	State	Machine	Replication	(SMR)

Server	
program

Deterministic	
state	machine

Server	
program
Server	

Application

Replica

Replica

input

input

input

input

input

Server	
program

Server	
Application

Agreement	
Protocol

Background:	State	Machine	Replication	(SMR)

Server	
program

Deterministic	
state	machine

Server	
program
Server	

Application

Replica

Replica

input

input

input

input

input

Server	
program

Server	
Application

Agreement	
Protocol

Background:	State	Machine	Replication	(SMR)

Server	
program

Deterministic	
state	machine

Server	
program
Server	

Application

Replica

Replica

input

input

input

input

input

Server	
program

Server	
Application

Agreement	
Protocol

agreement
execution

agreement
execution

• Reduce	cost	with	on-demand	instantiation
Activate	minimum	set	of	replicas	and	wakeup	backup	ones	when	active	ones	fail
Problem:	system	is	unavailable	when	rebuilding	backup	replica

Our	solution:	on-demand	instantiation	+	lazy	recovery

• Reduce	cost	with	on-demand	instantiation
Activate	minimum	set	of	replicas	and	wakeup	backup	ones	when	active	ones	fail
Problem:	system	is	unavailable	when	rebuilding	backup	replica

• Address	availability	problem	by	lazy	recovery
Rebuild	a	backup	replica	in	the	background

Our	solution:	on-demand	instantiation	+	lazy	recovery

• Reduce	cost	with	on-demand	instantiation
Activate	minimum	set	of	replicas	and	wakeup	backup	ones	when	active	ones	fail
Problem:	system	is	unavailable	when	rebuilding	backup	replica

• Address	availability	problem	by	lazy	recovery
Rebuild	a	backup	replica	in	the	background

• Challenge
How	to	ensure	the	system	is	able	to	function	correctly	even	when	some	nodes	
have	only	partial	state?

Our	solution:	on-demand	instantiation	+	lazy	recovery

Key	observation:	when	agreement	and	execution	are	
separated,		they	each	presents	a	unique	property	that	
enables	lazy	recovery

• Agreement:	decide	the	next	request	to	execute

• Observation:	agreement	protocol	is	memoryless
A	node	does	not	need	to	know	prior	requests	when	agreeing	on	the	next	one

Instant	activation	for	agreement	nodes

Backup	agreement	node

Client

Active	agreement	node

• Agreement:	decide	the	next	request	to	execute

• Observation:	agreement	protocol	is	memoryless
A	node	does	not	need	to	know	prior	requests	when	agreeing	on	the	next	one

Activate	minimum	number	of	agreement	nodes
that	can	reach	agreement	𝑁"#$%&'(=	𝑁)*+,"-(

Instant	activation	for	agreement	nodes

Backup	agreement	node

Client

Active	agreement	node

• Agreement:	decide	the	next	request	to	execute

• Observation:	agreement	protocol	is	memoryless
A	node	does	not	need	to	know	prior	requests	when	agreeing	on	the	next	one

Activate	minimum	number	of	agreement	nodes
that	can	reach	agreement	𝑁"#$%&'(=	𝑁)*+,"-(

Instant	activation	for	agreement	nodes

Backup	agreement	node

Client

Active	agreement	node

• Agreement:	decide	the	next	request	to	execute

• Observation:	agreement	protocol	is	memoryless
A	node	does	not	need	to	know	prior	requests	when	agreeing	on	the	next	one

Activate	minimum	number	of	agreement	nodes
that	can	reach	agreement	𝑁"#$%&'(=	𝑁)*+,"-(

Instant	activation	for	agreement	nodes

Backup	agreement	node

Client

Active	agreement	node Ask	a	blank	backup	node	to	join	agreement
Immediately

• Agreement:	decide	the	next	request	to	execute

• Observation:	agreement	protocol	is	memoryless
A	node	does	not	need	to	know	prior	requests	when	agreeing	on	the	next	one

Activate	minimum	number	of	agreement	nodes
that	can	reach	agreement	𝑁"#$%&'(=	𝑁)*+,"-(

Instant	activation	for	agreement	nodes

Backup	agreement	node

Client

Active	agreement	node Ask	a	blank	backup	node	to	join	agreement
Immediately

Recover	the	backup	node	later	in	the	background

• Execution:	execute	requests	and	other	applications’	tasks
Critical	task	(e.g.	executing	a	request,	sending	replies	to	clients)
Flexible	task	(e.g.	taking	a	snapshot	for	garbage	collection)

• Observation:	
Number	of	replicas	required	to	execute	critical	tasks	(𝑁#+%$%#"-.)	is	sometimes	fewer	
than	that	required	to	execute	flexible	tasks	(𝑁0-'1%2-'.)

Separating	critical	and	flexible	tasks	for	execution

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

Can	always	perform	critical	tasks

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

Can	perform	flexible	tasks	when	there	are	no	failures

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

𝑓 = 1, 𝑁#+%$%#"-. = 1,𝑁0-'1%2-'. = 2 => 𝑁"#$%&'. = 2

Backup	execution	node

Client

Active	execution	node

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

𝑓 = 1, 𝑁#+%$%#"-. = 1,𝑁0-'1%2-'. = 2 => 𝑁"#$%&'. = 2

Backup	execution	node

Client

Active	execution	node
Can	perform	critical	tasks,	but	not	flexible	tasks

• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'.)	nodes

Separating	critical	and	flexible	tasks	for	execution

𝑓 = 1, 𝑁#+%$%#"-. = 1,𝑁0-'1%2-'. = 2 => 𝑁"#$%&'. = 2

Backup	execution	node

Client

Active	execution	node
Can	perform	critical	tasks,	but	not	flexible	tasks

Delay	flexible	tasks	after	recovery	completes

Summary

• Activate	a	subset	of	agreement	and	execution	nodes

• When	an	agreement	node	fails,	ask	a	blank	one	to	join	agreement	
immediately

• When	an	execution	node	fails,	keep	processing	requests	with	
remaining	execution	nodes

• Recover	nodes	later	in	the	background

• Paxos
𝑁)*+,"-(= 𝑓 + 1è 𝑁"#$%&'(= 𝑓 + 1
𝑁#+%$%#"-. = 1,	𝑁0-'1%2-'. = 𝑓 + 1è 𝑁"#$%&'. = 𝑓 + 1

Protocol Original Our approach
Paxos 2f+1	/	2f+1 f+1	/	f+1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1

Case	studies

• Paxos
𝑁)*+,"-(= 𝑓 + 1è 𝑁"#$%&'(= 𝑓 + 1
𝑁#+%$%#"-. = 1,	𝑁0-'1%2-'. = 𝑓 + 1è 𝑁"#$%&'. = 𝑓 + 1

Protocol Original Our approach
Paxos 2f+1	/	2f+1 f+1	/	f+1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1

Case	studies

• UpRight Execution
𝑁#+%$%#"-. = 𝑟 + 1,	𝑁0-'1%2-'. = max	(𝑢, 𝑟) + 1è 𝑁"#$%&'. = 𝑢 + 𝑟 + 1

Protocol Original Our approach
Paxos 2f+1	/ 2f+1 f+1	/	f+1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1

Case	studies

• Zyzzyva	[Kotla SOSP’07]
𝑁)*+,"-(= 3𝑓 + 1 (Speculation)	è 𝑁"#$%&'(= 3𝑓 + 1
𝑁#+%$%#"-. = 𝑓 + 1,	𝑁0-'1%2-'. = 𝑓 + 1è 𝑁"#$%&'. = 2𝑓 + 1

Our	approach	is	not	always	effective

Protocol Original Our approach
Paxos 2f+1	/	2f+1 f+1	/	f+1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1

Case	studies

• Zyzzyva	[Kotla SOSP’07]
𝑁)*+,"-(= 3𝑓 + 1 (Speculation)	è 𝑁"#$%&'(= 3𝑓 + 1
𝑁#+%$%#"-. = 𝑓 + 1,	𝑁0-'1%2-'. = 𝑓 + 1è 𝑁"#$%&'. = 2𝑓 + 1

Our	approach	is	not	always	effective

Protocol Original Our approach
Paxos 2f+1	/	2f+1 f+1	/	f+1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1

Case	studies

Adaptive	recovery
• Challenge:	how	to	finish	recovery	in	a	timely	manner?
• Why	necessary?

Delayed recovery results in higher probabilityof data loss

Long delayed flexible tasks (e.g. garbage collection)will block the system

• Our	solution
An adaptive approach tomeet the deadline specified by the administrator

Evaluation
• Build	ThriftyPaxos from	scratch	in	Java

• Questions
• What	is	the	performance	of	ThriftyPaxos when	there	are	no	failures?

Compare	to	standard	Paxos

• What	is	the	availability	of	ThriftyPaxos when	failures	occur?
Compare	to	standard	Paxos and	Cheap	Paxos

• Can	adaptive	recovery	meet	the	deadline	with	different	configurations?
Use	various	deadlines	and	state	sizes

Evaluation	setup

• Machines
Dell	R220	with	8	cores,	16GB	RAM	and	two	hard	drivers

• Evaluate	replicated	H2 and	RemoteHashMap
H2:	database	system,	ran	TPC-C	over	H2
RemoteHashMap:	benchmark	application	built	by	us

• Methodology
To	evaluate	availability,	kill	agreement	and	execution	nodes	to	emulate	failures

ThriftyPaxos achieves	higher	throughput

ThriftyPaxos achieves	73%~88%	more	write	throughput

50k

100k

150k

200k

f=1,v=512b f=1,v=4k f=1,v=16k f=2,v=512b f=2,v=4k f=2,v=16k

Th
ro
ug
hp

ut
	(R
eq

ue
st
s/
s) ThriftyPaxos Standard	Paxos Zookeeper

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery

f=1,	v=512b,	snapshot=5G

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

Recover	backup	replicas

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

Loading	snapshot	+	replaying	logs

Related	work
• On-demand	instantiation

Cheap	Paxos[Lamport DSN’04],	ZZ	[Wood	Eurosys’11]
• Accurate	failure	detection

Falcon[Leners SOSP’11],	…
• Higher	read	throughput

ZooKeeper[Hunt	ATC’10],	Gaios[Bolosky NSDI’11],	…
• Lower	latency

Fast	Paxos[Lamport DC’06],	Speculative	Paxos[Ports	NSDI’15],	
Zyzzyva	[Kotla SOSP’07],	…

• Multi-leader	load	balance
Mencius	[Mao	OSDI’08],	EPaxos [Moraru SOSP’13],	…

Conclusion

• Strong	replication	does	not	have	to	be	expensive

• No	need	to	invent	new	protocols
• Examine	conditions	for	correctness	and	availability	in	existing	protocols
• Combine	on-demand	instantiation	and	lazy	recovery

https://github.com/vdr007/ThriftyPaxos

