Cheap and Available State
Machine Replication

Rong Shi, Yang Wang
The Ohio State University

Protect data from failures

* Data is important
Durability: data is never lost
Availability: data can be accessed at any time

* Failures
Power loss, DRAM bit errors, disk corruption, software bugs, ...

Protect data from failures

* Data is important
Durability: data is never lost
Availability: data can be accessed at any time

* Failures
Power loss, DRAM bit errors, disk corruption, software bugs, ...

How to ensure data durability and availability despite failures?

Protect data from failures

* Data is important
Durability: data is never lost
Availability: data can be accessed at any time

* Failures
Power loss, DRAM bit errors, disk corruption, software bugs, ...

How to ensure data durability and availability despite failures?

Replication

Basic idea of replication

i, .
(R RIS e et AP

NS
Lt st LA PN

Basic idea of replication

Basic idea of replication

Redundancy => fault tolerance

-)V)“gv ".x

Basic idea of replication

Redundancy => fault tolerance

I
O]
["‘}‘*
Qe {y .
5 g e renill T R R P o,
oz e S B R RSP s vy RO

g

AL SN

Data replication => availability and durability

Stronger replication requires more replicas

* Primary-backup: f+1 replicas => f crash failures
Data: GFS [Ghemawat SOSP’03], HDFS [Shvachko MSST’10], ...

* Paxos: 2f+1 replicas => f crash failures and timing errors (e.g. long message delay)
Lock service: Boxwood [MacCormick OSDI’04], Chubby [Burrows OSDI'06], ...
Data: SMART [Lorch Eurosys’06], ...

Metadata: MS Azure [Calder SOSP’11], ...
Data + metadata: Megastore [Baker CIDR’11], Spanner [Corbett OSDI'12], ...

* BFT: 3f+1 replicas => f arbitrary failures
Data + metadata: FARSITE [Adya OSDI'02], UpRight [Clement SOSP’09], ...

Stronger replication requires more replicas

Stronger
-

guarantees

Lower
“—

replication cost

* Are we willing to pay a higher cost for stronger guarantees?

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

O Client

. Active replica

(5 Backup replica

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

Activate minimum subset of replicas

Q Client

. Active replica

6 Backup replica ,J

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

Activate minimum subset of replicas

Q Client

. Active replica

X(
(5 Backup replica @

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

Attivate minimum subset of replicas

Q Client |
. Active replica X <

(L Backup replica ’ Activate a backup replica

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

Attivate minimum subset of replicas

Q Client

. Active replica

(L Backup replica ’ Activate a backup replica

The system is unavailable when activating a backup
replica (transfer data)

Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...

Attivate minimum subset of replicas

Q Client
. Active replica X

Activate a backup replica

@ Backup replica ‘

The system is unavailable when activating a backup
replica (transfer data)

Existing work made other tradeoffs

e Separating agreement from execution ([Yin SOSP’03])
Separating a replicainto an agreement node and an execution node
In BFT, # execution nodes can be smaller than # agreement nodes
Not effective for applications that are heavy in agreement or using Paxos

Existing work made other tradeoffs

e Separating agreement from execution ([Yin SOSP’03])
Separating a replicainto an agreement node and an execution node
In BFT, # execution nodes can be smaller than # agreement nodes
Not effective for applications that are heavy in agreement or using Paxos

e Separating metadata from data (Gnothi[Wang ATC’12])
Full replication of metadata and partial replication of data
Only effective for block storage

Strong
guarantees

Lower
replication cost

s it possible to reduce replication cost without
hurting availability and correctness?

Strong
guarantees

Lower
replication cost

s it possible to reduce replication cost without
hurting availability and correctness?

Yes for many popular protocols (e.g. Paxos, UpRight)

Highlights

Paxos 2f +1 f+1

UpRight Execution u+ max(u,r)+1 u+r+1

u: number of omission failures
r: number of commission failures

Background: State Machine Replication (SMR)

input
Deterministic
Input state machine
: Server
Input ..
Application
input

input

Background: State Machine Replication (SMR)

input Server :
roeram Replica
Deterministic Pros

input state machire

_ Server

Input ..
Application

input

Server :
: L. Replica
input Application

Background: State Machine Replication (SMR)

input Server :
roeram Replica
Deterministic Pros

input state machine
_ Server Agreement
Input ..

Application Protocol
input

Server :
: L. Replica
input Application

Background: State Machine Replication (SMR)

: (/
input Sy
."j \;z:n Replica
Deterministic J—Q >

input state machine

: Agreemen

nout Se-rver- greement
Application Protocol

input

Server Replica
input Application P

Background: State Machine Replication (SMR)

P agreement
Deterministic execution
Input state machine
' Agreement
input Se-rver- g
Application Protocol
input

Server agreement
input Application execution

Our solution: on-demand instantiation + lazy recovery

* Reduce cost with on-demand instantiation
Activate minimum set of replicas and wakeup backup ones when active ones fail
Problem: system is unavailable when rebuilding backup replica

Our solution: on-demand instantiation + lazy recovery

* Reduce cost with on-demand instantiation
Activate minimum set of replicas and wakeup backup ones when active ones fail
Problem: system is unavailable when rebuilding backup replica

* Address availability problem by lazy recovery
Rebuild a backup replica in the background

Our solution: on-demand instantiation + lazy recovery

* Reduce cost with on-demand instantiation
Activate minimum set of replicas and wakeup backup ones when active ones fail
Problem: system is unavailable when rebuilding backup replica

* Address availability problem by lazy recovery
Rebuild a backup replica in the background

* Challenge

How to ensure the system is able to function correctly even when some nodes
have only partial state?

Key observation: when agreement and execution are
separated, they each presents a unique property that
enables lazy recovery

Instant activation for agreement nodes

* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
A node does not need to know prior requests when agreeing on the next one

O Client

. Active agreement node

6 Backup agreement node

Instant activation for agreement nodes

* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
A node does not need to know prior requests when agreeing on the next one

Activate minimum number of agreement nodes
thatcan reach agreement N4, . =N2 .

Q Client

. Active agreement node

Cb Backup agreement node

&

Instant activation for agreement nodes

* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
A node does not need to know prior requests when agreeing on the next one

Activate minimum number of agreement nodes
thatcan reach agreement N4, . =N2 .

Q Client

. Active agreement node

Cb Backup agreement node

&

Instant activation for agreement nodes

* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
A node does not need to know prior requests when agreeing on the next one

Q Client

. Active agreement node

Cj Backup agreement node

&
&

Activate minimum number of agreement nodes

A AT A
that can reach agreement N, tive = Niormal

Ask a blank backup nodeto join agreement
Immediately

Instant activation for agreement nodes

* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
A node does not need to know prior requests when agreeing on the next one

Q Client

. Active agreement node

Cb Backup agreement node

&
@

Activate minimum number of agreement nodes

A _ A
hat can reach agreement N ¢ive = Noiormal

A
I

a blank backup nodeto join agreement
ediately

Recover the backup node later in the background

Separating critical and flexible tasks for execution

* Execution: execute requests and other applications’ tasks
Critical task (e.g. executing a request, sending replies to clients)
Flexible task (e.g. taking a snapshot for garbage collection)

 Observation:
E

Number of replicas required to execute critical tasks (N-iticq1) 1S SOMetimes fewer
than that required to execute flexible tasks (Nﬁexible)

Separating critical and flexible tasks for execution

* Our strategy
. E E E
Activate Nyctipe = Max (Nepiticar + 1 Nflexible) nodes

Separating critical and flexible tasks for execution

* Our strategy
Activate NE . = NE .+ fINE, ...)nod
ClVate Vg ctive = MaX (N eritical flexible nodades

Can always perform critical tasks

Separating critical and flexible tasks for execution

* Our strategy
Activate chctive = Mmax (Ncg‘itical + fr [NfElexibl;) nodes

Can perform flexible tasks when there are no failures

Separating critical and flexible tasks for execution

* Our strategy

E

. E _ E
Activate Nactive = Mmax (Ncritical + fr Nflexible) nodes

O Client

Q Active execution node

Backup execution node

@

e

— E — E _ 9 _ E —
f =1, Ncritical - 1’Nflexible =2=> Nactive = 2

Separating critical and flexible tasks for execution

* Our strategy

Activate N2 ..

_ E E
= Mmax (Ncritical + fr Nflexible) nodes

O Client

Q Active execution node

Backup execution node

@

T

_ E _ E N E -
f — 1r Ncritical - 1'Nflexible =2=> Nactive =2

Can performcritical tasks, but not flexible tasks

Separating critical and flexible tasks for execution

* Our strategy

Activate N2 ..

= max (N

Q Client

Q Active execution node

Backup execution node

E E
critical + fr Nflexible) nodes

Q f=1 Ngﬂitical = 1'NfElexible =2 => Nc]f:ctive =2

Can perform critical tasks, but not flexible tasks

Q Delay flexible tasks after recovery completes

Summary

* Activate a subset of agreement and execution nodes

* When an agreement node fails, ask a blank one to join agreement
immediately

* When an execution node fails, keep processing requests with
remaining execution nodes

* Recover nodes later in the background

Case studies

Protocol Original Our approach
Paxos 2f+1 / 2f+1 f+1/f+1
UpRight Execution| u+ max(u, r)+1 u+r+1
Zyzzyva 3f+1/ 2f+1 3f+1 / 2f+1
* Paxos
[Nyormar = f + 1 Njerive = [+ 1]
Neviticar = 1 Nfjexipie = F + 1 Ngpipe =+ 1

Case studies

Protocol Original Our approach
Paxos 2f+1 / 2f+1 f+1/f+1
UpRight Execution| u+ max(u, r)+1 u+r+1
Zyzzyva 3f+1 / 2f+1 3f+1 / 2f+1
* Paxos
Nnormal f +1> Nactwe f + 1
| Niiticar=1 Nfigxipe =+ 1 Necpipe =/ + 1|

Case studies

Protocol Original Our approach
Paxos 2f+1 / 2f+1 f+1/f+1
UpRight Execution| u+ max(u, r)+1 u+r+1
Zyzzyva 3f+1/ 2f+1 3f+1 / 2f+1

* UpRight Execution
[Nc[;“itical =7+ 1r Nﬁexible — max(u, T) +1=> ch‘ctive =u+r+1]

Case studies

Protocol Original Our approach
Paxos 2f+1 / 2f+1 f+1/f+1
UpRight Execution| u+ max(u, r)+1 u+r+1
Zyzzyva 3f+1/ 2f+1 3f+1 / 2f+1
* /yzzyva [Kotla SOSP’07]
[Nnormal = 3f + 1 (Speculation) > N4, . =3f +1]

N critical —

=f+1, Nflexlble f+1=> Nactwe =2f +1

Our approach is not always effective

Case studies

Protocol Original Our approach
Paxos 2f+1 / 2f+1 f+1/f+1
UpRight Execution| u+ max(u, r)+1 u+r+1
Zyzzyva 3f+1 / 2f+1 3f+1 / 2f+1
* /yzzyva [Kotla SOSP’07]
Nnormal = 3f + 1 (Speculation) > N4, . =3f +1

[N critical —

=f+1, Nflexlble f+1 Nactwe =2f + 1]

Our approach is not always effective

Adaptive recovery

* Challenge: how to finish recovery in a timely manner?

* Why necessary?

Delayed recovery results in higher probability of data loss

Long delayed flexible tasks (e.g. garbage collection) will block the system

e OQur solution

An adaptive approach to meet the deadline specified by the administrator

Evaluation

* Build ThriftyPaxos from scratch in Java

* Questions
 What is the performance of ThriftyPaxos when there are no failures?
Compare to standard Paxos

* What is the availability of ThriftyPaxos when failures occur?
Compare to standard Paxos and Cheap Paxos

e Can adaptive recovery meet the deadline with different configurations?
Use various deadlines and state sizes

Evaluation setup

 Machines
Dell R220 with 8 cores, 16GB RAM and two hard drivers

* Evaluate replicated H2 and RemoteHashMap
H2: database system, ran TPC-C over H2
RemoteHashMap: benchmark application built by us

* Methodology

To evaluate availability, kill agreement and execution nodes to emulate failures

ThriftyPaxos achieves higher throughput

200k
B ThriftyPaxos M Standard Paxos W Zookeeper

f=1,v=512b f=1,v=4k f=1,v=16k f=2,v=512b f=2,v=4k f=2,v=16k

[EY
U
o
~

Throughput (Requests/s)

ThriftyPaxos achieves 73%~88% more write throughput

Maintaining availability during failure recovery

200k

100k

200k

Throughput (requests/s)

100k

| : | L | : | | L | 1 | o |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

200k

100k

)
S
S o

100k

Kill a non-leader replica Kill the leader
| Standard Pa?‘o‘é o o o o o o o R
| | | o : | | i E | | 1 3 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

Kill a non-leader replica Kill the leader

| ThriftyPaxos

N

100k -

200k

| Standard Paxo

)
S
S o

100K | s

0 | \ | gl] | N E | | | o |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

200k

100k

)
S
S o

100k

Kill a non-leader replica Kill the leader
| | L] S | i | 1 1 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

Kill a non-leader replica Recover backup replicas Kill the leader

200k

100k

)
S
S o

100k

ThriftyPaxos | ‘
| | L | : | | L | ' ' : |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

Kill a non-leader replica Kill the leader

200k

100k

)
S
S o

100k

| ThriftyPaxos

StandardPaxok

0 200

400

600 800 1000 1200 1400 1600 1800 2000 2200 2400
Time (seconds)

f=1, v=512b, snapshot=5G

Throughput (requests/s)

Maintaining availability during failure recovery

Loadingsnapshot + replayinglogs

200k

100k

)
S
S o

100k

Kill a non-leader replica

 ThriftyPaxos |

Kill the leader

'

'

: | |
] I]
Standard Paxos ‘ - | ‘ E
| | L | : | | L | 1 | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Time (seconds)

f=1, v=512b, snapshot=5G

Related work

e Accurate failure detection
Falcon[Leners SOSP’11], ...

* Higher read throughput
ZooKeeper[Hunt ATC’10], Gaios[Bolosky NSDI'11], ...

* Lower latency
Fast Paxos[Lamport DC’06], Speculative Paxos[Ports NSDI’15],
Zyzzyva [Kotla SOSP’07], ...

* Multi-leader load balance
Mencius [Mao OSDI’08], EPaxos [Moraru SOSP’13], ...

Conclusion

 Strong replication does not have to be expensive

* No need to invent new protocols

* Examine conditionsfor correctness and availability in existing protocols
 Combine on-demand instantiation and lazy recovery

https://github.com/vdr007/ThriftyPaxos

