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Basic	idea	of	replication
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Data	replication	=>	availability	and	durability



• Primary-backup: f+1 replicas	=>	f	crash	failures
Data:	GFS	[Ghemawat SOSP’03],	HDFS	[ShvachkoMSST’10],	…

• Paxos: 2f+1 replicas	=>	f crash	failures	and	timing	errors	(e.g.	long	message	delay)
Lock	service:	Boxwood	[MacCormick OSDI’04],	Chubby	[Burrows	OSDI’06],	…
Data:	SMART	[Lorch Eurosys’06],	…
Metadata:	MS	Azure	[Calder	SOSP’11],	…
Data	+	metadata:	Megastore	[Baker	CIDR’11],	Spanner	[Corbett	OSDI’12],	…

• BFT:	3f+1 replicas	=>	f	arbitrary	failures
Data	+	metadata:	FARSITE	[Adya OSDI’02],	UpRight [Clement	SOSP’09],	…

Stronger	replication	requires	more	replicas



Stronger	replication	requires	more	replicas

• Are	we	willing	to	pay	a	higher	cost	for	stronger	guarantees?

Stronger	
guarantees

Lower	
replication	cost



Existing	work	made	other	tradeoffs
• On-demand	instantiation	for	asynchronous	replication	protocols

Cheap	Paxos [Lamport DSN’04],	ZZ	[Wood	Eurosys’11],	…

Backup	replica

Client

Active	replica
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• Separating	agreement	from	execution	([Yin	SOSP’03])
Separating	a	replica	into	an	agreement	node	and	an	execution	node
In	BFT,	#	execution	nodes	can	be	smaller	than	#	agreement	nodes
Not	effective	for	applications	that	are	heavy	in	agreement	or	using	Paxos

Existing	work	made	other	tradeoffs



• Separating	agreement	from	execution	([Yin	SOSP’03])
Separating	a	replica	into	an	agreement	node	and	an	execution	node
In	BFT,	#	execution	nodes	can	be	smaller	than	#	agreement	nodes
Not	effective	for	applications	that	are	heavy	in	agreement	or	using	Paxos

• Separating	metadata	from	data	(Gnothi [Wang	ATC’12])
Full	replication	of	metadata	and	partial	replication	of	data
Only	effective	for	block	storage

• …...

Existing	work	made	other	tradeoffs



Is	it	possible	to	reduce	replication	cost	without	
hurting	availability	and	correctness?
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Is	it	possible	to	reduce	replication	cost	without	
hurting	availability	and	correctness?

Stronger	
guarantees

Yes for	many	popular	protocols	(e.g.	Paxos,	UpRight)

Strong	
guarantees
Lower	
replication	cost



Highlights

u:		number	of	omission	failures
r:		number	of	commission	failures

Protocol Original Our	approach

Paxos 2f	+	1 f	+	1

UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
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• Reduce	cost	with	on-demand	instantiation
Activate	minimum	set	of	replicas	and	wakeup	backup	ones	when	active	ones	fail
Problem:	system	is	unavailable	when	rebuilding	backup	replica

Our	solution:	on-demand	instantiation	+	lazy	recovery
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• Reduce	cost	with	on-demand	instantiation
Activate	minimum	set	of	replicas	and	wakeup	backup	ones	when	active	ones	fail
Problem:	system	is	unavailable	when	rebuilding	backup	replica

• Address	availability	problem	by	lazy	recovery
Rebuild	a	backup	replica	in	the	background

• Challenge
How	to	ensure	the	system	is	able	to	function	correctly	even	when	some	nodes	
have	only	partial	state?

Our	solution:	on-demand	instantiation	+	lazy	recovery



Key	observation:	when	agreement	and	execution	are	
separated,		they	each	presents	a	unique	property	that	
enables	lazy	recovery
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Recover	the	backup	node	later	in	the	background



• Execution:	execute	requests	and	other	applications’	tasks
Critical	task	(e.g.	executing	a	request,	sending	replies	to	clients)
Flexible	task	(e.g.	taking	a	snapshot	for	garbage	collection)

• Observation:	
Number	of	replicas	required	to	execute	critical	tasks	(𝑁#+%$%#"-. )	is	sometimes	fewer	
than	that	required	to	execute	flexible	tasks	(𝑁0-'1%2-'. )

Separating	critical	and	flexible	tasks	for	execution



• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'. )	nodes
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• Our	strategy
Activate	𝑁"#$%&'. =	max	(𝑁#+%$%#"-. + 𝑓,	𝑁0-'1%2-'. )	nodes

Separating	critical	and	flexible	tasks	for	execution

𝑓 = 1, 𝑁#+%$%#"-. = 1,𝑁0-'1%2-'. = 2 => 𝑁"#$%&'. = 2

Backup	execution	node

Client

Active	execution	node
Can	perform	critical	tasks,	but	not	flexible	tasks

Delay	flexible	tasks	after	recovery	completes



Summary

• Activate	a	subset	of	agreement	and	execution	nodes

• When	an	agreement	node	fails,	ask	a	blank	one	to	join	agreement	
immediately

• When	an	execution	node	fails,	keep	processing	requests	with	
remaining	execution	nodes

• Recover	nodes	later	in	the	background



• Paxos
𝑁)*+,"-( = 𝑓 + 1è 𝑁"#$%&'( = 𝑓 + 1
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UpRight Execution u	+	max(u, r)	+	1 u	+	r	+	1
Zyzzyva 3f+1	/	2f+1 3f+1	/	2f+1
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• UpRight Execution
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• Zyzzyva	[Kotla SOSP’07]
𝑁)*+,"-( = 3𝑓 + 1 (Speculation)	è 𝑁"#$%&'( = 3𝑓 + 1
𝑁#+%$%#"-. = 𝑓 + 1,	𝑁0-'1%2-'. = 𝑓 + 1è 𝑁"#$%&'. = 2𝑓 + 1

Our	approach	is	not	always	effective
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Adaptive	recovery
• Challenge:	how	to	finish	recovery	in	a	timely	manner?
• Why	necessary?

Delayed recovery results in higher probabilityof data loss

Long delayed flexible tasks (e.g. garbage collection)will block the system

• Our	solution
An adaptive approach tomeet the deadline specified by the administrator



Evaluation
• Build	ThriftyPaxos from	scratch	in	Java

• Questions
• What	is	the	performance	of	ThriftyPaxos when	there	are	no	failures?

Compare	to	standard	Paxos

• What	is	the	availability	of	ThriftyPaxos when	failures	occur?
Compare	to	standard	Paxos and	Cheap	Paxos

• Can	adaptive	recovery	meet	the	deadline	with	different	configurations?
Use	various	deadlines	and	state	sizes



Evaluation	setup

• Machines
Dell	R220	with	8	cores,	16GB	RAM	and	two	hard	drivers

• Evaluate	replicated	H2 and	RemoteHashMap
H2:	database	system,	ran	TPC-C	over	H2
RemoteHashMap:	benchmark	application	built	by	us

• Methodology
To	evaluate	availability,	kill	agreement	and	execution	nodes	to	emulate	failures



ThriftyPaxos achieves	higher	throughput

ThriftyPaxos achieves	73%~88%	more	write	throughput
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Maintaining	availability	during	failure	recovery

f=1,	v=512b,	snapshot=5G
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f=1,	v=512b,	snapshot=5G
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f=1,	v=512b,	snapshot=5G

Recover	backup	replicas



�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G



�

����

���� ������������

�

����

����

� ��� ��� ��� ��� ���� ���� ���� ���� ���� ���� ���� ����

��
��
��
��
��
���
��
��
���
��

���� ���������

�������� �����

Maintaining	availability	during	failure	recovery
Kill	a	non-leader	replica Kill	the	leader

f=1,	v=512b,	snapshot=5G

Loading	snapshot	+	replaying	logs



Related	work
• On-demand	instantiation

Cheap	Paxos[Lamport DSN’04],	ZZ	[Wood	Eurosys’11]
• Accurate	failure	detection

Falcon[Leners SOSP’11],	…
• Higher	read	throughput

ZooKeeper[Hunt	ATC’10],	Gaios[Bolosky NSDI’11],	…
• Lower	latency

Fast	Paxos[Lamport DC’06],	Speculative	Paxos[Ports	NSDI’15],	
Zyzzyva	[Kotla SOSP’07],	…

• Multi-leader	load	balance
Mencius	[Mao	OSDI’08],	EPaxos [Moraru SOSP’13],	…



Conclusion

• Strong	replication	does	not	have	to	be	expensive

• No	need	to	invent	new	protocols
• Examine	conditions	for	correctness	and	availability	in	existing	protocols
• Combine	on-demand	instantiation	and	lazy	recovery

https://github.com/vdr007/ThriftyPaxos


