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Data replication => availability and durability



Stronger replication requires more replicas

* Primary-backup: f+1 replicas => f crash failures
Data: GFS [Ghemawat SOSP’03], HDFS [Shvachko MSST’10], ...

* Paxos: 2f+1 replicas => f crash failures and timing errors (e.g. long message delay)
Lock service: Boxwood [MacCormick OSDI’04], Chubby [Burrows OSDI'06], ...
Data: SMART [Lorch Eurosys’06], ...

Metadata: MS Azure [Calder SOSP’11], ...
Data + metadata: Megastore [Baker CIDR’11], Spanner [Corbett OSDI'12], ...

* BFT: 3f+1 replicas => f arbitrary failures
Data + metadata: FARSITE [Adya OSDI'02], UpRight [Clement SOSP’09], ...



Stronger replication requires more replicas
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* Are we willing to pay a higher cost for stronger guarantees?



Existing work made other tradeoffs

* On-demand instantiation for asynchronous replication protocols
Cheap Paxos [Lamport DSN’04], ZZ [Wood Eurosys'11], ...
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Existing work made other tradeoffs

e Separating agreement from execution ([Yin SOSP’03])
Separating a replicainto an agreement node and an execution node
In BFT, # execution nodes can be smaller than # agreement nodes
Not effective for applications that are heavy in agreement or using Paxos

e Separating metadata from data (Gnothi[Wang ATC’12])
Full replication of metadata and partial replication of data
Only effective for block storage
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s it possible to reduce replication cost without
hurting availability and correctness?

Yes for many popular protocols (e.g. Paxos, UpRight)



Highlights

Paxos 2f +1 f+1

UpRight Execution u+ max(u,r)+1 u+r+1

u: number of omission failures
r: number of commission failures
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Our solution: on-demand instantiation + lazy recovery

* Reduce cost with on-demand instantiation
Activate minimum set of replicas and wakeup backup ones when active ones fail
Problem: system is unavailable when rebuilding backup replica

* Address availability problem by lazy recovery
Rebuild a backup replica in the background

* Challenge

How to ensure the system is able to function correctly even when some nodes
have only partial state?



Key observation: when agreement and execution are
separated, they each presents a unique property that
enables lazy recovery
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* Agreement: decide the next request to execute

* Observation: agreement protocolis memoryless
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Separating critical and flexible tasks for execution

* Execution: execute requests and other applications’ tasks
Critical task (e.g. executing a request, sending replies to clients)
Flexible task (e.g. taking a snapshot for garbage collection)

 Observation:
E

Number of replicas required to execute critical tasks (N-iticq1) 1S SOMetimes fewer
than that required to execute flexible tasks (Nﬁexible)
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Separating critical and flexible tasks for execution

* Our strategy

Activate N2 ..

= max (N

Q Client

Q Active execution node

Backup execution node

E E
critical + fr Nflexible) nodes

Q f=1 Ngﬂitical = 1'NfElexible =2 => Nc]f:ctive =2

Can perform critical tasks, but not flexible tasks

Q Delay flexible tasks after recovery completes



Summary

* Activate a subset of agreement and execution nodes

* When an agreement node fails, ask a blank one to join agreement
immediately

* When an execution node fails, keep processing requests with
remaining execution nodes

* Recover nodes later in the background
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Adaptive recovery

* Challenge: how to finish recovery in a timely manner?

* Why necessary?

Delayed recovery results in higher probability of data loss

Long delayed flexible tasks (e.g. garbage collection) will block the system

e OQur solution

An adaptive approach to meet the deadline specified by the administrator



Evaluation

* Build ThriftyPaxos from scratch in Java

* Questions
 What is the performance of ThriftyPaxos when there are no failures?
Compare to standard Paxos

* What is the availability of ThriftyPaxos when failures occur?
Compare to standard Paxos and Cheap Paxos

e Can adaptive recovery meet the deadline with different configurations?
Use various deadlines and state sizes



Evaluation setup

 Machines
Dell R220 with 8 cores, 16GB RAM and two hard drivers

* Evaluate replicated H2 and RemoteHashMap
H2: database system, ran TPC-C over H2
RemoteHashMap: benchmark application built by us

* Methodology

To evaluate availability, kill agreement and execution nodes to emulate failures



ThriftyPaxos achieves higher throughput
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ThriftyPaxos achieves 73%~88% more write throughput
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Maintaining availability during failure recovery

Loadingsnapshot + replayinglogs
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Related work

e Accurate failure detection
Falcon[Leners SOSP’11], ...

* Higher read throughput
ZooKeeper[Hunt ATC’10], Gaios[Bolosky NSDI'11], ...

* Lower latency
Fast Paxos[Lamport DC’06], Speculative Paxos[Ports NSDI’15],
Zyzzyva [Kotla SOSP’07], ...

* Multi-leader load balance
Mencius [Mao OSDI’08], EPaxos [Moraru SOSP’13], ...



Conclusion

 Strong replication does not have to be expensive

* No need to invent new protocols

* Examine conditionsfor correctness and availability in existing protocols
 Combine on-demand instantiation and lazy recovery

https://github.com/vdr007/ThriftyPaxos




