PostMan: Rapidly Mitigating Bursty Traffic by Offloading Packet Processing

Panpan Jin¹, Jian Guo¹, Yikai Xiao¹, Rong Shi², Yipei Niu¹, Fangming Liu^{*1}, Chen Qian³, Yang Wang²

¹OpenCloudNeXt Group, Huazhong University of Science and Technology ²The Ohio State University ³University of California Santa Cruz

OpenCloudNeXt Group: http://grid.hust.edu.cn/fmliu

Peak shopping season is going global

- Sale on Cyber Monday hits new record at \$6.6 Billion in 2017^[1]
- Black Friday racks up \$5.03 billion in online sales in 2017^[2]
- The 24-hour sale on Nov. 11 reaches \$25 billion in sales in 2017^[3]

- Bursty traffic is arriving!
 - Conversation rate in 24h^[4]

- Statistics on double 11^[5]
 - ✓ 325,000 orders/s at peak
 - ✓ 256,000 transactions/s at peak

Bursty traffic is a headache!

Traditional remedy: migrating hot data for load balancing

PostMan: batching and offloading on demand

- Helper batches small packets into large ones
- PostMan offloads packet
 overhead from overloaded
 server to helpers

Large packets

No data migration

Rapid mitigation

How to assemble small packets?

How to assemble small packets?

How to assemble small packets?

Is batching in helpers efficient?

Is batching in helpers efficient?

Efficient packet processing

Is batching in helpers efficient?

DPDK & mTCP based stack Efficient packet processing

Everything works fine, except...

Stateless failover mechanism

Programming with PostMan library

pm_connect:

- Chooses a helper and connect to the helper.
- ✓ Sends a special "connect" packet to the helper node.

get_info:

 Allows the application to retrieve connection information, such as the number of sent and received packets

decompose:

- Identifies the "connect" packet and notifies application that a new client tries to connect
- Disassembles the packet into small packets

compose:

Buffers multiple replies and assemble them

How to enable helpers?

Load balancing across helpers

normal load

Load balancing across helpers

How to disable helpers?

Complementary to data migration

- Positioning of PostMan
 - PostMan is an alternative solution to data migration for bursty traffic
 - Data migration is the ultimate solution to mitigate bursty traffic

Evaluation Setup

□ Testbed: CloudLab: 15 machines

 Machine: 10 physical cores and hyper-threading, an Intel 82599ES 10 Gigabit NIC

□ Server side: Memcached , Paxos and IX

D Helper node: DPDK 16.07.2

Client side: Ping-pong benchmark and IX

□ SLA: 500 µs (99 percentile latency, p99)

PostMan vs. Data Migration

2 helper nodes 660 client connections Mitigation time: **550ms** vs. 13s

2 helper nodes 960 client connections Mitigation time: **750ms** vs. 8s

Capabilities of PostMan

Memcached vs Memcached + PostMan

- Up to 5 helper nodes
- Load range: 2000K~6000K
- Throughput: **3.3**×

Paxos vs Paxos + PostMan

- Up to 6 helper nodes
- Load range: **500K~5000K**
- Throughput: 2.8×

Performance gain of PostMan

Linux vs Linux + PostMan

- Up to 6 helper nodes
- 8 cores: turning point is **400 bytes**
- 1 core: turning point is **1460 bytes**

IX vs IX + PostMan

- Up to 6 helper nodes
- 8 cores: turning point is **260 bytes**
- 1 core: turning point is **920 bytes**

Fault tolerance

Takes about **0.4s** to recover all 1000 connections

Conclusion

We propose **PostMan**, an alternative approach to *rapidly* mitigate load imbalance for services processing *small requests*

- ✓ Rapid: much faster than data migration
- ✓ Efficient: Fast I/O, user-level stack for packet processing
- ✓ Fault-tolerant: stateless failover design
- ✓ Scalable: no scalability bottleneck

Reference

[1] Cyber Monday Hits New Record At \$6.6 Billion, The Largest Online Shopping Day In U.S. History, https://www.forbes.com/sites/jeanbaptiste/2017/11/28/report-cyber-monday-hits-new-record-at-6-6billion-over-1-billion-more-than-2016/#124347253662 [2] Black Friday racks up \$5.03B in online sales, \$2B on mobile alone, https://techcrunch.com/2017/11/24/black-friday-deals-net-640m-in-sales-so-far-mobile-60-of-all-traffic/ [3] Alibaba's Singles' Day By The Numbers: A Record \$25 Billion Haul, https://www.forbes.com/sites/helenwang/2017/11/12/alibabas-singles-day-by-the-numbers-a-record-25-billion-haul/#4af0c1b1db15 [4] STATE OF ONLINE RETAIL PERFORMANCE, https://www.akamai.com/us/en/multimedia/documents/report/akamai-state-of-online-retail-performance-2017-holiday.pdf [5] \$25 billion in 24 hours: Alibaba creates history. Highlights from Double 11 at Shanghai, https://yourstory.com/2017/11/25-billion-24-hours-alibaba-creates-history-double-11 [6] Workload Analysis of a Largescale Key-value Store. In Proc. of SIGMETRICS, 2012.

Thank you!

Is batching in helpers adaptive?

Is batching in helpers adaptive?

Is batching in helpers adaptive?

Connect to helpers

Switch to other helpers

Migrate connection after pending packets are received

Further optimization

Better load balancing strategy

□ Information communication

- Better solution to update utilization of helpers in clients
- Better solution of informing clients to disconnect from helpers

Management of large scale helpers

• How to startup and shutdown helpers

Adaptive batching

Higher load \rightarrow Larger batch size & smaller batch interval Lower load \rightarrow Smaller batch size & Larger batch interval

Performance of PostMan

A single helper node can process about **9.6 million** small messages (2×4.8 million) per second