
Evaluating	Scalability	Bottlenecks	
by	Workload	Extrapolation

Rong Shi,	Yifan Gan,	Yang	Wang
The	Ohio	State	University

Big	data	era

2

• Data	is	growing
Large-scale	distributed	systems	are	widely	deployed	to	store	and	
process	data

Centralized	scalability	bottlenecks

• Large-scale	distributed	systems
Sharded data	+	centralized	metadata	design

• Bottleneck
Metadata	server	will	eventually	become	the	
bottleneck	as	system	scale	increases

Investigate	bottlenecks	to	understand	and	
improve	system	scalability

client

Data	Node	1 Data	Node	2 Data	Node	3 Data	Node	N

Metadata	server
File	=	“test”
Block	A:
DN1,	 DN3
… …

Evaluate	system	at	large	scale

4

Academia
-Hundreds	of	machines
-Hundreds	of	TBs

Public	testbeds	
limited	resources,	e.g.	CloudLab (315	nodes)
Commercial	platforms:
expensive	e.g.	$100	(100	nodes,	1h)

Industry
- Tens	of	thousands	
of	machines
- Hundreds	of	PBs
- Growing	fast

Facebook:	>4k	servers
Yahoo:	32k	cluster

Can	we	evaluate	centralized	scalability	
bottlenecks	on	small	testbeds?

First	approach:	resource	extrapolation

•Measure	resource	consumption	of	a	bottleneck	at	small	scales
• Predict	its	resource	consumption	at	a	large	scale
• Assumption:	resource	consumption	grows	linearly	with	the	scale	or	at	
least	predictably

6
100

10%

5%

Number	of	Nodes

N
et
w
or
k	
Co

ns
um

pt
io
n

50 1000

First	approach:	resource	extrapolation

• Assumption	can	be	violated:
- Problem	only	occur	when	the	system	reaches	certain	limit
- Resource	consumption	grows	super	linearly	with	the	scale

7
100

10%

5%

Number	of	Nodes

N
et
w
or
k	
Co

ns
um

pt
io
n

50 1000

Server	is	overloaded

• Run	target	node	in	real	mode	and	build	stubs	to	simulate	others

Second	approach:	stubs

8

Target	
node

realreal

real

real

real

• Run	target	node	in	real	mode	and	build	stubs	to	simulate	others
Work	well	with	simple	benchmarks,	or	under	specific	assumption

Second	approach:	stubs

9

Target	
node

stubstub

stub

stub

stub

• Problem:	stubs	could	be	complex
5GB	WordCount to	NameNode:	1171	RPCs	(19	types),	23592	arguments,	6	type	of	nodes

Second	approach:	stubs

10

Target	
node

stubstub

stub

stub

stub

Trade-off

• Resource	extrapolation
- Applicable	to	any	system
- Not	really	test	metadata	server	under	heavy	load,	which	hurts	its	accuracy

• Stubs
- Keep	the	logic	of	the	bottleneck	node	and	thus	has	good	accuracy,	assuming	
stubs	are	accurate
- Building	accurate	stubs	is	complex	unless	satisfying	certain	assumptions

11

Applicability Accuracy

Is	it	possible	to	strike	a	balance	between	
applicability	and	accuracy?

Is	it	possible	to	strike	a	balance	between	
applicability	and	accuracy?

Yes for	centralized	metadata	servers

Key	observation:	systems	at	a	large	scale	are	
often	repeating	their	behaviors	at	small	scales
• Users	tend	to	run	same	job	many	times	with	different	inputs
• Run	same	code	pieces	on	many	nodes	to	scale	to	large	number	
of	nodes

• Use	loops	to	adapt	code	to	the	growing	amount	of	data

• Provides	an	opportunity	for	accurate	workload	extrapolation
- Replace	data	servers	with	light-weight	stubs
- Extrapolate	their	output	messages	to	the	metadata	services

14

PatternMiner

ABCBC

Work	flow	of	workload	extrapolation

15

2-node	experiment

ABCBCBCBC

4-node	experiment

… … …

Preparing Mining Testing

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

With	8-nodes,	the	trace	should	be:
ABCBCBCBCBCBCBCBC

ABCBCBCBC
BCBCBCBC

Target	node Other	nodes Stub	player

Preparing
• Requirements	of	workload	logs

complete	and	semantically	meaningful

• Light-weight	instrumentation
2017-11-16	13:21:59.012	sender=29054:32 rpc=ClientProtocol.getFileInfo
Call#0 Retry#0 request={"src":	"/terasort/in-4"},	response={“”}

16

AABB

2-node	experiment

AAAABBBB

4-node	experiment

… … … Parsed
log

timeStamp senderID RPC	name argument_request argument_reply

13:21:59.012 29054:32 getFileInfo type: src /terasort/in-4 null

Mining	using	PatternMiner

• Separate	nodes’	logs	based	on	senderID

• Relocate	some	RPCs	by	causal	ordering
- Track	unique	IDs	of	certain	tasks	(e.g.block_id,	ts)

• Cluster	logs	by	histogram	of	RPC	names

17

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

Relocate	RPCs	based	on	causal	ordering

• E/F	in	B-1	triggered	by	C/D	in	A-1	and	A-2
• Repetition	is	not	clear	in	B-1,	due	to	non-determinism	in	timing
• Causal	ordering	technique	could	alleviate	this	problem

18

E F E F

A B C D C D

E F EFX

A B C D C D

Y

Node A-1

Node A-2

Node B-1

Mining

• Detect	nondeterministic	RPCs

• Identify	static	and	repeated	patterns
Sequence:	list	of	template	<type,	pattern,	repetition>

• Validate	key	assumption
segment	information	consistent	across	experiments,
except	for	repeated	segments

19

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

Mining
• Context
- Segment	info	<type,	seg,	offset,	iter>,	environment	info

• Regular	pattern
- Constant	values,	regularly	changed	values
- Cross	iteration/node	summarization
- Cross	experiment	validation

• Information	flow
- Values	from	args/return	value	of	previous	RPCs
- Summarize	args pattern	and	validation

20

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

Mining

• Time	intervals	within	the	same	node

- Compute	time-diff	and	use	LR	to	check

• Starting	time	of	a	node

- e.g.	reducer	starts	after	all	mappers	finish

- Predefine	a	set	of	patterns	(e.g.	fork,	join)

21

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

Mining
• Specify	configuration	by	developers
• Extrapolate	RPC	types
- Predict	#iteration	for	repeated	pattern
- Leave	real-time	related	patterns

• Extrapolate	RPC	arguments
- Fill	values	for	regular	pattern
- Fill	template	for	information	flow	arguments

• Extrapolate	timing
- Directly	use	extracted	interval	(insert	sleep())
- Generate	rules	to	predict	when	a	node	starts

22

Preprocessing

Mining	message	types

Mining	message	arguments

Mining	message	timing

Extrapolating	messages

Testing

• Use	stubs	to	replace	all	real	nodes	except	the	target	
node,	collocate	multiple	stubs	on	same	machine

• Run	target	node	in	real	mode

23

AAAAAAAA
BBBBBBBB

Architecture	of	simulator

24

Evaluation

• How	well	can	our	approach	extrapolate	workloads	(%	predict)?
• How	accurate	is	the	extrapolated	workload	(v.s.	real)?

• Can	the	extrapolated	workload	help	identify	performance	

problems?

Apply	our	approach	to	Hadoop	and	extrapolate	workloads	for	HDFS	

NameNode and	YARN	Resource	Manager	with	4	benchmarks

25

How	well	can	our	approach	extrapolate	
workloads?

C	=	Constant,	R	=	Regular	pattern,	IF	=	Information	flow

Total C R IF Unknown %
NameNode
WordCount 1371 754 47 541 29 97.88%
TeraSort 3134 1710 92 1278 54 98.28%
KMeans 3178 1773 84 1262 59 98.14%
InvertedIndex 2011 1130 48 800 33 98.36%
Resource	Manager
WordCount 179 108 18 22 31 82.68%

26

How	well	can	our	approach	extrapolate	
workloads?

C	=	Constant,	R	=	Regular	pattern,	IF	=	Information	flow

27

Total C R IF Unknown %
NameNode
WordCount 1371 754 47 541 29 97.88%
TeraSort 3134 1710 92 1278 54 98.28%
KMeans 3178 1773 84 1262 59 98.14%
InvertedIndex 2011 1130 48 800 33 98.36%
Resource	Manager
WordCount 179 108 18 22 31 82.68%

• Random	values	(e.g.	uuid)
• Timestamp	(e.g.	contextID,	filename)
• Data-dependent	(e.g.	outputFile size,	
storage	use)

• Easy	to	handle:	Random	values	(random	generator),	TS	(current	time)

• Cannot	be	accurately	estimated:	data-dependent	values

- Put	estimated	values	in	testing,	since	NameNode’s performance	is	not	sensitive

How	well	can	our	approach	extrapolate	
workloads?

C	=	Constant,	R	=	Regular	pattern,	IF	=	Information	flow

28

Total C R IF Unknown %
NameNode
WordCount 1371 754 47 541 29 97.88%
TeraSort 3134 1710 92 1278 54 98.28%
KMeans 3178 1773 84 1262 59 98.14%
InvertedIndex 2011 1130 48 800 33 98.36%
Resource	Manager
WordCount 179 108 18 22 31 82.68%

• Port	information	(e.g.	rpc_port)
• Specific	files	(e.g.	size,	creation	time)
• Task	progress	(e.g.	20%)
• Argument	of	Allocate()	call

Allocate()
Report	states	(in	most	cases):	predictable
Ask	for	new	resource:	write	code	to	simulate	internal	logics

How	well	can	our	approach	extrapolate	
workloads?

C	=	Constant,	R	=	Regular	pattern,	IF	=	Information	flow

29

Total C R IF Unknown %
NameNode
WordCount 1371 754 47 541 29 97.88%
TeraSort 3134 1710 92 1278 54 98.28%
KMeans 3178 1773 84 1262 59 98.14%
InvertedIndex 2011 1130 48 800 33 98.36%
Resource	Manager
WordCount 179 108 18 22 31 82.68%

PatternMiner:	semi-automatic tool
Developers	need	to	handle	nondeterminstic events	and	unknown	argument	patterns

How	accurate	is	the	extrapolated	workload?

• Experiments:	run	WordCount and	TeraSort on	500 nodes in	Microsoft	Azure
- Record	their	traces	to	NameNode and	Resource	Manager
- Run	small-scale	experiments,	mine	patterns,	extrapolate	workload	of	500	nodes

• Validation
- RPC	Sequences:	match,	except	3	failed	DNs leading	to	differences	on	a	few	mappers
- RPC	arguments:	match
- Time	interval:	difference	is	within	10% for	90%	(NN)	and	99%	(RM)	of	the	intervals
- Start	time	of	nodes:	match

30

Can	the	extrapolated	workload	help	identify	
performance	problems?

31

0
1000
2000
3000
4000
5000
6000
7000
8000

0 5k 10k 15k 20k 30k 40kN
am
eN
od
e
Th
ro
ug
hp
ut
(R
PC
s/s
ec
)

Number of DataNodes

• Observe	one	correctness	issue
o NN	report	DNs	as	failed
o Cause:	burst	traffic
o HDFS	2.8	add	lifeline	protocol

NameNode is	overloading	after	20k

Can	the	extrapolated	workload	help	identify	
performance	problems?

32

• Startup	latency
Register	to	RM	->	Get	all	Containers

• Grows	steadily,	increase	
sharply	around	60k

• ~10s	delay	(start	application)	
is	problematic	for	short	tasks

Resource	Manager	is	saturated	around	60k

~10s	delay	in	medium	scales

Can	the	extrapolated	workload	help	identify	
performance	problems?

33

• Observe	over-subscription	issue
o App	may	get	more	containers	
than	it	asks	for

o Cause:	race	condition	of	last	
batch	allocation	and	request

o Spark:	gives	back	containers

Related	work

• Evaluating	system	at	large	scale
Industry:	Facebook’s	Kraken	[Veer	OSDI’16],	…
Stub:	Exalt	[Wang	NSDI’14],	Scale	Check	[Lees	HotOS’17],	...
Dynamometer	[Linkedin]

• Workload	extrapolation
Analyze	workloads	in	the	past	to	predict	workload	in	the	future	[Oly	ICS’02],	...

• Log	analysis
Infer	causal	relationship	between	events	[Zhao	OSDI’16],	...

Conclusion

• Testing	a	scalability	bottleneck	is	challenging

• Our	solution:
Test	a	bottleneck	node	by	extrapolating	a	workload	that	the	target	
node	would	observe	at	a	large	scale

https://github.com/OSUSysLab/HadoopMetadataBench

